Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 156))

Abstract

The segmentation of retinal vasculature by color fundus images analysis is crucial for several medical diagnostic systems, such as the diabetic retinopathy early diagnosis. Several interesting approaches have been done in this field but the obtained results need to be improved. We propose therefore a new approach based on an organization of agents. This multi-agent approach is preceded by a preprocessing phase in which the fundamental filter is an improved version of the Kirsch derivative. This first phase allows the construction of an environment where the agents are situated and interact. Then, edges detection emerged from agents’ interaction. With this study, competitive results as compared with those present in the literature were achieved and it seems that a very efficient system for the diabetic retinopathy diagnosis could be built using MAS mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–210 (2000)

    Article  Google Scholar 

  2. Staal, J.J., Abrámoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)

    Article  Google Scholar 

  3. Soares, J.V.B., Leandro, J.J., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  4. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag. 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  5. Mendonça, A., Campilho, A.: Segmentation of retinal blood vessel by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  6. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imag. 28(9) (2009)

    Google Scholar 

  7. Mahdjoub, J., Guessoum, Z., Michel, F., Herbin, M.: A multi-agent approach for the edge detection in image processings. In: 4th European Workshop on Multi-Agent Systems, Lisbon, Portugal (2006)

    Google Scholar 

  8. Haroun, R., Boumghar, F., Hassas, S., Hamami, L.: A Massive Multi-agent System for Brain MRI Segmentation. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS (LNAI), vol. 3446, pp. 174–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artificial Intelligence in Medicine 30, 153–176 (2004)

    Article  Google Scholar 

  10. Duchesnay, E., Montois, J.J., Jacquelet, Y.: Cooperative agents society organized as an irregular pyramid: A mammography segmentation application. Pattern Recognition Letters 24, 2435–2445 (2003)

    Article  Google Scholar 

  11. Bovenkamp, E.G.P., Dijkstra, J., Bosch, J.G., Reiber, J.H.C.: Multi-agent segmentation of IVUS images. Pattern Recognition 37, 647–663 (2004)

    Article  Google Scholar 

  12. Benamrane, N., Nassane, S.: Medical Image Segmentation by a Multi-agent System Approach. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 49–60. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M., Abràmoff, M.D.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imag. 24(5), 584–592 (2005)

    Article  Google Scholar 

  14. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Digital Processing of Biomedical Images, pp. 187–203. Plenum Press, New York (1976)

    Book  Google Scholar 

  15. Madkit Homepage, http://www.madkit.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pereira, C., Mahdjoub, J., Guessoum, Z., Gonçalves, L., Ferreira, M. (2012). Using MAS to Detect Retinal Blood Vessels. In: Pérez, J., et al. Highlights on Practical Applications of Agents and Multi-Agent Systems. Advances in Intelligent and Soft Computing, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28762-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28762-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28761-9

  • Online ISBN: 978-3-642-28762-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics