Skip to main content

R & D Cloud CEIB: Management System and Knowledge Extraction for Bioimaging in the Cloud

  • Conference paper
Distributed Computing and Artificial Intelligence

Abstract

The management system and knowledge extraction of bioimaging in the cloud (R & D Cloud CEIB) which is proposed in this article will use the services offered by the centralization of bioimaging through Valencian Biobank Medical Imaging (GIMC in Spanish) as a basis for managing and extracting knowledge from a bioimaging bank, providing that knowledge as services with high added value and expertise to the Electronic Patient History System (HSE), thus bringing the results of R & D to the patient, improving the quality of the information contained therein. R & D Cloud CEIB has four general modules: Search engine (SE), manager of clinical trials (GEBID), anonymizer (ANON) and motor knowledge (BIKE). The BIKE is the central module and through its sub modules analyses and generates knowledge to provide to the HSE through services. The technology used in R & D Cloud CEIB is completely based on Open Source.

Within the BIKE, we focus on the development of the classifier module (BIKEClassifier), which aims to establish a method for the extraction of biomarkers for bioimaging and subsequent analysis to obtain a classification in bioimaging available pools following GIMC diagnostic experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. FSL Group, http://www.fmrib.ox.ac.uk/fsl/

  2. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage (2011) (in press)

    Google Scholar 

  3. Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45, S173–S186 (2009)

    Article  Google Scholar 

  4. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1), 208–219 (2004)

    Article  Google Scholar 

  5. caBIG Community Website, https://cabig.nci.nih.gov/

  6. Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI Pipeline Processing Environment. Neuroimage 19(3), 1033–1048 (2003)

    Article  Google Scholar 

  7. Dinov, I.D., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., Zamanyan, A., Chakrapani, S., Van Horn, J.D., Parker, D.S., Magsipoc, R., Leung, K., Gutman, B., Woods, R.P., Toga, A.W.: Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline. PLoS ONE 5(9), e13070 (2010), doi:10.1371/journal.pone.0013070

    Google Scholar 

  8. XNAT - Open source informatics for biomedical imaging research, http://www.xnat.org

  9. Marcus, D.S., Olsen, T., Ramaratnam, M., Buckner, R.L.: The Extensible Neuroimaging Archive Toolkit (XNAT): An informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5(1), 11–34 (2007)

    Google Scholar 

  10. Manjon, J.V., Marti-Bonmati, L., Robles, M., Celda, B.: Postproceso en Imagen Medica: morfologia, funcional y molecular

    Google Scholar 

  11. Marti Bonmati, L., Alberich-Bayarri, A., Garcia-Marti, G., Sanz Requena, R., Perez Castillo, C., Carot Sierra, J.M., Manjon Herrera, J.V.: Biomarcadores de imagen, imagen cuantitativa y bioingenieria. In: Radiologia 2011 (2011)

    Google Scholar 

  12. DICOM, http://dicom.nema.org/

  13. Downing, G.: Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints. Clin. Pharmacol. Therap. 69, 89–95 (2001)

    Article  Google Scholar 

  14. Schuster, D.: The opportunities and challenges of developing imaging biomarkers to study lung function and disease. Am. J. Respir. Crit. Care Med. 176, 22–30 (2007)

    Article  Google Scholar 

  15. Van Beers, B., Cuenod, C.A., Mart-Bonmat, L., Matos, C., Niessen, W., Padhani, A.: European Society of Radiology Working Group on Imaging Biomarkers. White paper on Imaging Biomarkers. Insights Imaging. 1, 42–45 (2010)

    Google Scholar 

  16. Campbell, C.: Kernel methods: a survey of current techniques. Neurocomputing 48, 63–84 (2002)

    Article  MATH  Google Scholar 

  17. Mavroforakis, M.E., Georgiou, H.V., Dimitropoulos, N., Cavouras, D., Theodoridis, S.: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med. 37(2), 145–162 (2006)

    Article  Google Scholar 

  18. Siuly, Li, Y., Wen, P.P.: Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed. 104(3), 358–372 (2011)

    Article  Google Scholar 

  19. Bonev, B., Escolano, F., Cazorla, M.: Feature selection, mutual information, and the classification of high-dimensional patterns: Applications to image classification and microarray data analysis. Pattern Analysis and Applications 11(3-4) (August 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Salinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salinas, J.M., de la Iglesia-Vaya, M., Bonmati, L.M., Valenzuela, R., Cazorla, M. (2012). R & D Cloud CEIB: Management System and Knowledge Extraction for Bioimaging in the Cloud. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics