Skip to main content

Solving Time-Dependent Traveling Salesman Problems Using Ant Colony Optimization Based on Predicted Traffic

  • Conference paper
Distributed Computing and Artificial Intelligence

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 151))

  • 1995 Accesses

Abstract

In this paper, we propose an ant colony optimization based on the predicted traffic for time-dependent traveling salesman problems (TDTSP), where the travel time between cities changes with time. Prediction values required for searching is assumed to be given in advance. We previously proposed a method to improve the search rate of Max-Min Ant System (MMAS) for static TSPs. In the current work, the method is extended so that the predicted travel time can be handled and formalized in detail. We also present a method of generating a TDTSP to use in evaluating the proposed method. Experimental results using benchmark problems with 51 to 318 cities suggested that the proposed method is better than the conventional MMAS in the rate of search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Stutzle, T.: Ant colony optimization. The MIT Press (2004)

    Google Scholar 

  2. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization – Artificial ants as a computational intelligence technique. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Google Scholar 

  3. Dorigo, M., Stutzle, T.: Handbook of Metaheuristics. International Series in Operations Research & Management Science 146, 227–263 (2010)

    Article  Google Scholar 

  4. Mavrovouniotis, M., Yang, S.: Ant Colony Optimization with Immigrants Schemes in Dynamic Environments. In: Schaefer, R., Cotta, C., KoÅ‚odziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Kanoh, H., Kameda, Y.: Pheromone Trail Initialization with Local Optimal Solutions in Ant Colony Optimization. In: IEEE International Conference on Soft Computing and Pattern Recognition, pp. 338–343 (2010)

    Google Scholar 

  8. Stutzle, T., Hoos, H.H.: MAN-MIN ant system. Future Generation Computer System 16(8), 889–914 (2000)

    Article  Google Scholar 

  9. Reinelt, G.: The Traveling Salesman: Computational Solution for TSP Applications. LNCS, vol. 840. Springer, Heidelberg (1994)

    Google Scholar 

  10. Traveling Salesman Problem (TSPLIB), http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kanoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanoh, H., Ochiai, J. (2012). Solving Time-Dependent Traveling Salesman Problems Using Ant Colony Optimization Based on Predicted Traffic. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics