Skip to main content

Classifier Ensemble Framework Based on Clustering

  • Conference paper
Distributed Computing and Artificial Intelligence

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 151))

  • 1973 Accesses

Abstract

This paper proposes an innovative combinational method how to select the number of clusters in the Classifier Selection by Clustering (CSC) to improve the performance of classifier ensembles both in stabilities of their results and in their accuracies as much as possible. The CSC uses bagging as the generator of base classifiers. Base classifiers are kept fixed as either decision trees or multilayer perceptron during the creation of the ensemble. Then it partitions the classifiers using a clustering algorithm. After that by selecting one classifier per each cluster, it produces the final ensemble. The weighted majority vote is taken as consensus function of the ensemble. Here it is probed how the cluster number affects the performance of the CSC method and how we can switch to a well approximation option for a dataset adaptively. We expand our studies on a large number of real datasets of UCI repository to reach a well conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Breiman, L.: Bagging Predictors. Journal of Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters 22, 25–33 (2001)

    Article  MATH  Google Scholar 

  6. Günter, S., Bunke, H.: Creation of Classifier Ensembles for Handwritten Word Recognition Using Feature Selection Algorithms. In: Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR 2002), August 06-08, p. 183 (2002)

    Google Scholar 

  7. Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. Wiley, New York (2005)

    Google Scholar 

  8. Minaei-Bidgoli, B., Topchy, A.P., Punch, W.F.: Ensembles of Partitions via Data Resampling. In: ITCC, pp. 188–192 (2004)

    Google Scholar 

  9. Parvin, H., Minaei-Bidgoli, B., Beigi, A.: A New Classifier Ensembles Framework. Knowledge-Based and Intelligent Information and Engineering Systems, 110–119 (2011)

    Google Scholar 

  10. Yang, T.: Computational Verb Decision Trees. International Journal of Computational Cognition 4(4), 34–46 (2006)

    Google Scholar 

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, NY (2001)

    MATH  Google Scholar 

  12. Jain, A.K., Duin, R.P.W., Mao, J.: Satanical pattern recognition: a review. IEEE Transaction on Pattern Analysis and Machine Intelligence PAMI-22(1), 4–37 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Parvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parvin, H., Parvin, S., Rezaei, Z., Mohamadi, M. (2012). Classifier Ensemble Framework Based on Clustering. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28765-7_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28764-0

  • Online ISBN: 978-3-642-28765-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics