Skip to main content

Role of Physico-chemical Properties of Amino Acids in Protein’s Structural Organization: A Network Perspective

  • Conference paper
Book cover Information Processign in Cells and Tissues (IPCAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7223))

  • 1004 Accesses

Abstract

The three-dimensional structure of a protein can be described as a graph where nodes represent residues and interactions between them are edges. We have constructed protein contact networks at different length-scales for different interaction strength cutoffs. The largest connected component of short-range networks exhibit a highly cooperative transition, while long- and all-range networks (more similar to each other), have less cooperativity. The hydrophobic subnetworks in all- and long-range networks have similar phase transition behaviours while hydrophilic and charged networks don’t. Hydrophobic subclusters in long- and all-range networks exhibit higher occurrence of assortativity and hence higher communication ability in transmitting information within a protein. The highly cliquish hydrophobic nodes in long- and short-range networks play a significant role in bridging and stabilizing distantly placed residues during protein folding. We have also observed a significant dominance of charged residues cliques in short-range networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BoIde, C., KovaIcs, I.A., Szalay, M.S., Palotai, R., KorcsmaIros, T., Csermely, P.: Network analysis of protein dynamics. FEBS Lett. 581, 2776–2782 (2007)

    Article  Google Scholar 

  2. Brinda, K.V., Vishveshwara, S.: A network representation of protein structures: implications to protein stability. Biophys. J. 89, 4159–4170 (2005)

    Article  Google Scholar 

  3. Greene, L.H., Higman, V.A.: Uncovering network systems within protein structures. J. Mol. Biol. 334, 781–791 (2003)

    Article  Google Scholar 

  4. Dokholyan, N.V., Li, L., Ding, F., Shakhnovich, I.: Topological determinants of protein folding. Proc. Natl. Acad. Sci. USA 99, 8637–8641 (2002)

    Article  Google Scholar 

  5. del Sol, A., Fujihashi, H., Amoros, D., Nussinov, R.: Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol. Syst. Biol. 2 (2006); 2006.0019

    Google Scholar 

  6. Amitai, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., Pietrokovski, S.: Network analysis of protein structures identifies functional residues. J. Mol. Biol. 344, 1135–1146 (2004)

    Article  Google Scholar 

  7. Vendruscolo, M., Dokholyan, N.V., Paci, E., Karplus, M.: Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65, 06191 (2002)

    Article  Google Scholar 

  8. Kundu, S.: Amino acids network within protein. Physica A 346, 104–109 (2005)

    Article  Google Scholar 

  9. Aftabuddin, M., Kundu, S.: Weighted and unweighted network of amino acids within protein. Physica A 39, 895–904 (2006)

    Article  Google Scholar 

  10. Aftabuddin, M., Kundu, S.: Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys. J. 93, 225–231 (2007)

    Article  Google Scholar 

  11. Gromiha, M.M., Selvara, S.: Influence of medium and long-range interactions in protein folding. Prep. Biochem. and Biotechnol. 29, 339–351 (1999)

    Article  Google Scholar 

  12. Go, N., Taketomi, H.: Respective roles of short- and long-range interactions in protein folding. Proc. Natl. Acad. Sci. USA 75, 559–563 (1978)

    Article  Google Scholar 

  13. Selvaraj, S., Gromiha, M.M.: Role of hydrophobic clusters and long-range contact networks in the folding of (α/β)8 barrel proteins. Biophys. J. 84(3), 1919–1925 (2003)

    Article  Google Scholar 

  14. Brinda, K.V., Vishveshwara, S., Vishveshwara, S.: Random network behaviour of protein structures. Mol. BioSyst. 6, 391–398 (2010)

    Article  Google Scholar 

  15. Deb, D., Vishveshwara, S., Vishveshwara, S.: Understanding protein structure from a percolation perspective. Biophysical Journal 97(6), 1787–1794 (2009)

    Article  Google Scholar 

  16. Tinoco, I., Sauer, K., Wang, J.C.: Physical Chemistry: Principles and Application in Biological Sciences. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  17. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701–208704 (2002)

    Article  Google Scholar 

  18. Segel, I.H.: Biochemical Calculations. John Wiley and Sons, New York (1997)

    Google Scholar 

  19. Maity, H., Maity, M., Krishna, M.M.G., Mayne, L., Englander, S.W.: Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. USA 102, 4741–4746 (2005)

    Article  Google Scholar 

  20. Bagler, G., Sinha, S.: Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics 23, 1760–1767 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sengupta, D., Kundu, S. (2012). Role of Physico-chemical Properties of Amino Acids in Protein’s Structural Organization: A Network Perspective. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics