Skip to main content

Criticality of Spatiotemporal Dynamics in Contact Mediated Pattern Formation

  • Conference paper
Information Processign in Cells and Tissues (IPCAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7223))

  • 979 Accesses

Abstract

The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by an identical intracellular randomly generated Boolean network. Cell-cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks from ordered, critical and chaotic domains demonstrate that: (1) Ordered and critical intracellular networks tend to create the most complex intercellular communication networks and the most information-dense patterns; (2) signalling configurations where cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns when the intracellular networks are non-chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster (2003), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3370

  2. Án, M.C., Alfonseca, M., Ortega, A.: Common pitfalls using normalized compression distance: what to watch out for in a compressor. Communications in Information and Systems 5, 367–384 (2005), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.9265

    MathSciNet  Google Scholar 

  3. Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms. PLoS ONE 3(6), e2456+ (2008), http://dx.doi.org/10.1371/journal.pone.0002456 , doi:10.1371/journal.pone.0002456

    Article  Google Scholar 

  4. Bodnar, J.W.: Programming the Drosophila embryo. Journal of Theoretical Biology 188(4), 391–445 (1997), http://dx.doi.org/10.1006/jtbi.1996.0328

    Article  Google Scholar 

  5. Burrows, M., Wheeler, D.J., Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm (1994), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177

  6. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared Information and Program Plagiarism Detection. IEEE Transactions on Information Theory 50(7), 1545–1551 (2004), http://dx.doi.org/10.1109/TIT.2004.830793

    Article  MathSciNet  Google Scholar 

  7. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005), http://dx.doi.org/10.1109/TIT.2005.844059

    Article  MathSciNet  Google Scholar 

  8. Derrida, B., Pomeau, Y.: Random Networks of Automata: A Simple Annealed Approximation. EPL (Europhysics Letters) 1(2), 45–49 (1986), http://dx.doi.org/10.1209/0295-5075/1/2/001

    Article  Google Scholar 

  9. Eglen, S.J., Willshaw, D.J.: Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129(23), 5399–5408 (2002), http://view.ncbi.nlm.nih.gov/pubmed/12403711

    Article  Google Scholar 

  10. Galas, D.J., Nykter, M., Carter, G.W., Price, N.D., Shmulevich, I.: Biological Information as Set-Based Complexity. IEEE Transactions on Information Theory 56(2), 667–677 (2010), http://dx.doi.org/10.1109/TIT.2009.2037046

    Article  MathSciNet  Google Scholar 

  11. Goodyear, R., Richardson, G.: Pattern formation in the basilar papilla: evidence for cell rearrangement. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 17(16), 6289–6301 (1997), http://view.ncbi.nlm.nih.gov/pubmed/9236239

    Google Scholar 

  12. Huang, S., Eichler, G., Yam, Y.B., Ingber, D.E.: Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network. Physical Review Letters 94(12), 128701+ (2005), http://dx.doi.org/10.1103/PhysRevLett.94.128701

    Article  Google Scholar 

  13. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969), http://view.ncbi.nlm.nih.gov/pubmed/5803332

    Article  Google Scholar 

  14. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution, 1st edn. Oxford University Press, USA (1993), http://www.worldcat.org/isbn/0195079515

    Google Scholar 

  15. Kauffman, S.A., Johnsen, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149(4), 467–505 (1991), http://dx.doi.org/10.1016/S0022-51930580094-3

    Article  Google Scholar 

  16. Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband Criticality of Human Brain Network Synchronization. PLoS Comput. Biol. 5(3), e1000314+ (2009), http://dx.doi.org/10.1371/journal.pcbi.1000314

    Article  MathSciNet  Google Scholar 

  17. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Evolution and morphogenesis of differentiated multicellular organisms: Autonomously generated diffusion gradients for positional information. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 321–328. MIT Press (2008), http://panmental.de/ALifeXIflag

  18. Knoll, A.H.: The Multiple Origins of Complex Multicellularity. Annual Review of Earth and Planetary Sciences 39(1), 217–239 (2011), http://dx.doi.org/10.1146/annurev.earth.031208.100209

    Article  Google Scholar 

  19. Lander, A.D.: Morpheus Unbound: Reimagining the Morphogen Gradient. Cell 128(2), 245–256 (2007), http://dx.doi.org/10.1016/j.cell.2007.01.004

    Article  Google Scholar 

  20. Lander, A.D.: Pattern, Growth, and Control. Cell 144(6), 955–969 (2011), http://dx.doi.org/10.1016/j.cell.2011.03.009

    Article  Google Scholar 

  21. Mazumdar, A., Mazumdar, M.: How one becomes many: blastoderm cellularization in Drosophila melanogaster. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 24(11), 1012–1022 (2002), http://dx.doi.org/10.1002/bies.10184

    Google Scholar 

  22. Mitchell, M., Hraber, P., Crutchfield, J.P.: Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations (March 1993), http://arxiv.org/abs/adap-org/9303003

  23. Nykter, M., Price, N.D., Larjo, A., Aho, T., Kauffman, S.A., Harja, O.Y., Shmulevich, I.: Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships. Physical Review Letters 100(5), 058702+ (2008), http://dx.doi.org/10.1103/PhysRevLett.100.058702

    Article  Google Scholar 

  24. Serra, R., Villani, M., Damiani, C., Graudenzi, A., Colacci, A.: The Diffusion of Perturbations in a Model of Coupled Random Boolean Networks. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 315–322. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-79992-4_40

    Chapter  Google Scholar 

  25. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America 102(38), 13439–13444 (2005), http://dx.doi.org/10.1073/pnas.0506771102

    Article  Google Scholar 

  26. Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. Journal of Theoretical Biology 153(1), 1–23 (1991), http://dx.doi.org/10.1016/S0022-51930580350-9

    Article  Google Scholar 

  27. Villani, M., Serra, R., Ingrami, P., Kauffman, S.A.: Coupled Random Boolean Network Forming an Artificial Tissue. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 548–556. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11861201_63

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flann, N.S., Mohamadlou, H., Podgorski, G.J. (2012). Criticality of Spatiotemporal Dynamics in Contact Mediated Pattern Formation. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics