Abstract
The mechanisms leading to the initiation of normal, premature or dysfunctional human labour are poorly understood, as animal models are inappropriate, and experimental studies are limited. Computational modelling provides a means of linking non-invasive clinical data with the results of in vitro cell and tissue physiology. Nonlinear wave processes – propagation in an excitable medium – provides a quantitatively testable description of mechanisms of premature and full term labour, and a view of changes in uterine electrophysiology during gestation as a trajectory in excitation and intercellular coupling parameter space. Propagation phenomena can account for both premature and full term labour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aslanidi, O., Atia, J., Benson, A.P., can den Berg, H.A., Blamks, A.M., Choi, C., Gilbert, S.H., Goryanain, I., Hayes-Gill, B.R., Holden, A.V., Li, P., Norman, J.E., Shymygol, A., Simpson, N.A.B., Taggart, M.J., Tong, W.C., Zhang, H.: Towards a computational reconstruction of the electrodymamics of premature and full term labour. Prog. Biophys. Mol. Biol. 107, 182–192 (2011)
Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439 (1995)
Bru-Mercier, G., Shmygol, A., Thornton, S., Blanks, A.M.: Spontaneous activity and the complex action potential requires the myometrial network. Reproductive Sciences 15(2), S114A–S115A (2007)
Burdyga, T., Borisova, L., Burdyga, A.T., Wray, S.: Temporal and spatial variations in spontaneous Ca events and mechanical activity in pregnant rat myometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(suppl. 1), S25–S32 (2009)
Bursztyn, L., Eytan, O., Jaffa, A.J., Elad, D.: Mathematical model of excitation-contraction in a uterine smooth muscle cell. Am J. Physiol. 292, C1816–C1829 (2007)
Eswaran, H., Govindan, R.B., Furdea, A., Murphy, P., Lowery, C.L., Priessl, H.T.: Extraction, quantification and characterization of uterine magnetomyographic activity-a proof of concept case study. European J. of Obstet. & Gynecol. Reprod. Biol. 144, 96–100 (2009)
Franciscus, R.: When did the modern human pattern of childbirth arise? New insights from an old Neathertal pelvis. Proc. Nat. Acad. Sci. (USA) 106, 9125–9126 (2009)
Garfield, R.E., Maner, W.L.: Physiology and electrical activity of uterine contractions. Seminars in Cell and Developmental Biology 18, 289–295 (2007)
May, R.: Dynamical diseases. Nature 272, 673–674 (1978)
Inoue, Y., Okabe, K., Soeda, H.: Augmentation and suppression of action potentials by estradiol in the myometrium. Can. J. Physiol. Pharm. 77, 447–453 (1999)
Lammers, W.J.E.P., Mirghani, H., Stephen, B., Dhanasekaran, S., Wahab, A., Al Sultan, M.A.H., Abazer, F.: Patterns of electrical propagation in the intact pregnant guinea pig uterus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R919–R928 (2008)
Norman, J.E., Morris, C., Chalmers, J.: The Effect of Changing Patterns of Obstetric Care in Scotland (1980–2004) on Rates of Preterm Birth and Its Neonatal Consequences: Perinatal Database Study. PLoS Med. 6(9), e1000153 (2009)
Norwitz, E.R., Robinson, J.N., Challis, J.R.G.: The control of labour New England. J. Medicine 341, 66666 (1999)
Partington, H.C., Tonta, M.A., Brennecke, S.P., Coleman, H.A.: Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labour. American J. Obsetrics and Gynaecolgy 181, 1145–1151 (1999)
Ramon, C., Preissl, H., Murphy, P., et al.: Synchronization analysis of the uterine magnetic activity during contractions. Bio. Med. Eng. OnLine 4(55) (2005)
Rihana, S., Terrien, J., Geramain, G., Marque, C.: Mathematical modelling of the activity of uterine muscle cells. Med. Biol. Eng. Comput. 47, 665a–675a (2009)
Shmigol, A.V., Eisner, D.A., Wray, S.: Properties of voltage-activated [Ca++]i transients in single smooth muscle cells isolated from pregnant rat uterus. Journal of Physiology 511, 803–811 (1998)
Shmygol, A., Blanks, A.M., Bru-Mercier, G., Gullam, J.E., Thornton, S.: Control of Uterine Ca2+ by Membrane Voltage Toward Understanding the Excitation–Contraction Coupling in Human Myometrium. Ann. N. Y. Acad. Sci. 1101, 97–109 (2007)
Tong, C., Choi, C.Y., Kharche, S., Holden, A.V., Zhang, H., Taggart, M.Y.: A computational model for the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS ONE 6(4), e18685 (2011)
Winfree, A.T.: Varieties of spiral wave behaviour: An experimentalist’s approach to the theory of excitable media. Chaos 1, 303–334 (1991)
Wolf, G.M.J.A., van Leeuwen, M.: Electromyographic observations on the human uterus during labour. Acta Obstet. Gynecology Scand. Suppl. 90, 2–61 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pervolaraki, E., Holden, A.V. (2012). Human Uterine Excitation Patterns Leading to Labour: Synchronization or Propagation?. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-28792-3_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28791-6
Online ISBN: 978-3-642-28792-3
eBook Packages: Computer ScienceComputer Science (R0)