Skip to main content

Bio-inspired Information Processing Applied to Engineering Systems

  • Conference paper
Information Processign in Cells and Tissues (IPCAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7223))

  • 978 Accesses

Abstract

Over the course of billions of years, under evolutionary pressure, Nature has evolved solutions to various problems. As our ability to understand the biological mechanisms that are intrinsic in these solutions continues to improve, we have the opportunity to apply this knowledge when solving our challenging problems, in fields such as medicine and the environment. This paper discusses an approach, in which biological systems are investigated as information processing systems, and the understanding of how these systems process information is then applied to engineering systems. Two examples are presented. The first one discusses how the heart’s fault-tolerant information processing can be implemented in an electronic system. The second example discusses a cellular biochemical reaction network and how its property of robustness can be implemented in a chemical system. Finally, three different applications, in which this approach is already being applied with promising results, are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications of the ACM 51(10), 72–83 (2008)

    Article  Google Scholar 

  2. Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems biology and computational thinking. Molecular Systems Biology 7(546), 1–11 (2011)

    Google Scholar 

  3. Von Neumann, J.: Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.), vol. 21(100). University of Illinois Press (1966)

    Google Scholar 

  4. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks. MIT Press (1995)

    Google Scholar 

  5. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford Univ. Press (1997)

    Google Scholar 

  6. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley and Sons (2006)

    Google Scholar 

  7. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Heidelberg (1998)

    Google Scholar 

  8. Paun, G. (ed.): Membrane Computing: An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)

    Article  Google Scholar 

  10. Gleick, J.: The Information, 1st edn. Fourth State (2011)

    Google Scholar 

  11. Shannon, C.: A mathematical theory of communication. The Bell System Technical Journal 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  12. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  13. Chaitin, G.J.: On the length of programs for computing binary sequences. Journal of the ACM 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sole, R., Goodwin, B.: Signs of Life: How Complexity Pervades Biology. Basic Books (2002)

    Google Scholar 

  15. Winfree, A.T.: When Time Breaks Down: Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton University Press (1987)

    Google Scholar 

  16. Santini, C.C., Tyrrell, A.: Understanding and harnessing self-organization. In: Proceedings of the 2007 IEEE Symposium on Artificial Life, pp. 192–198. IEEE Computational Intelligence Society (2007)

    Google Scholar 

  17. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445–466 (1961)

    Article  Google Scholar 

  18. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)

    Google Scholar 

  19. Santini, C.C., Tyrrell, A.M.: Investigating the properties of self-organisation and synchronisation in electronic systems. IEEE Transactions on NanoBioscience 8, 237–251 (2009)

    Article  Google Scholar 

  20. Acar, M., Pando, B.F., Arnold, F.H., Elowitz, M.B., van Oudenaarden, A.: A general mechanism for network-dosage compensation in gene circuits. Science 329(5999), 1656–1660 (2010)

    Article  Google Scholar 

  21. Wolf, D.M., Arkin, A.P.: Motifs, modules and games in bacteria. Current Opinion in Microbiology 6(2), 125–134 (2003)

    Article  Google Scholar 

  22. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  23. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nature Genetics 31(1), 64–68 (2002)

    Article  Google Scholar 

  24. Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T., Weiss, R.: Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences of the United States of America 101(17), 6355–6360 (2004)

    Article  Google Scholar 

  25. Goentoroa, L., Shoval, O., Kirschner, M., Alon, U.: The incoherent feedforward loop can provide fold-change detection in gene regulation. Molecular Cell 36, 894–899 (2009)

    Article  Google Scholar 

  26. Kaplan, S., Bren, A., Dekel, E., Alon, U.: The incoherent feed-forward loop can generate non-monotonic input functions for genes. Molecular Systems Biology 4, 203 (2008)

    Article  Google Scholar 

  27. Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews Genetics 8(6), 450–461 (2007)

    Article  Google Scholar 

  28. Alon, U.: An Introduction to Systems Biology Design Principles of Biological Circuits, 1st edn. Mathematical and Computational Biology Series. Chapman and Hall/CRC (2007)

    Google Scholar 

  29. Turberfield, A.: DNA as an engineering material. Physics World, 43–46 (March 2003)

    Google Scholar 

  30. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Programming and Evolvable Machines 4(2), 111–122 (2003)

    Article  Google Scholar 

  31. Green, S.J., Lubrich, D., Turberfield, A.J.: DNA hairpins: Fuel for autonomous DNA devices. Biophysical Journal 91(8), 2966–2975 (2006)

    Article  Google Scholar 

  32. MATLAB, version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)

    Google Scholar 

  33. Hanahan, D., Weinberg, R.: Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  34. Tyson, J.J., Baumann, W.T., Chen, C., Verdugo, A., Tavassoly, I., Wang, Y., Weiner, L.M., Clarke, R.: Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nature Reviews Cancer 11(7), 523–532 (2011)

    Article  Google Scholar 

  35. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047), 1307–1311 (2011)

    Article  Google Scholar 

  36. Venkataraman, S., Dirks, R.M., Ueda, C.T., Pierce, N.A.: Selective cell death mediated by small conditional RNAs. Proceedings of the National Academy of Sciences of the United States of America 107(39), 16777–16782 (2010)

    Article  Google Scholar 

  37. Weinkamer, R., Fratzl, P.: Mechanical adaptation of biological materials — the examples of bone and wood. Materials Science and Engineering C 31(6), 1164–1173 (2010)

    Article  Google Scholar 

  38. Charg, S.B.P., Rudnicki, M.A.: Cellular and molecular regulation of muscle regeneration. Physiological Reviews 84(1), 209–238 (2004)

    Article  Google Scholar 

  39. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315(5811), 487–490 (2007)

    Article  Google Scholar 

  40. Barber, J.: Biological solar energy. Philosophical Transactions of the Royal Society - Series A: Mathematical, Physical and Engineering Sciences 365(1853), 1007–1023 (2007)

    Article  Google Scholar 

  41. Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S.M., Gratzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011)

    Article  Google Scholar 

  42. Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Pijpers, J.J.H., Nocera, D.G.: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science (September 2011)

    Google Scholar 

  43. Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. Harper Perennial (1997/2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santini, C.C. (2012). Bio-inspired Information Processing Applied to Engineering Systems. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics