Skip to main content

Summarizing and Detecting Structural Drifts from Multiple Data Streams

  • Conference paper
  • First Online:
Classification and Data Mining

Abstract

In recent years the analysis of data streams has received a lot of attention. This is motivated by the increase of the number of applications which generate huge amounts of high speed temporal data. Let us think to sensor networks, computer networks, manufactures. Data streams are usually highly evolving, thus mining changes in data is a challenging task. In this paper we will deal with the structural drift detection problem where the aim is to discover and to describe changes in proximity relations among multiple data streams. We will introduce a new strategy whose effectiveness is shown through an application on simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal, C. (2007). Data streams models and algorithms (Springer series: Advances in database systems, Vol. 31). New York: Springer.

    Google Scholar 

  • De Carvalho, F., Lechevallier, Y., & Verde, R. (2004). Clustering methods in symbolic data analysis. In D. Banks, L. House, F. R. McMorris, P. Arabie, & E. Gaul (Eds.), Classification, clustering, and data mining applications (Studies in classification, data analysis, and knowledge organization, pp. 299–317). Berlin: Springer.

    Google Scholar 

  • Da Silva, A., Lechevallier, Y., & de Carvalho, F. (2009). Vers la simulation et la détection des changements des données évolutives d’usage du Web. EGC, 453–454.

    Google Scholar 

  • Diday, E. (1971). La methode des Nuees dynamiques. Revue de Statistique Appliquee, 19(2), 19–34.

    MathSciNet  Google Scholar 

  • Gama, J., & Gaber, M. M. (2007). Learning from data streams: Processing techniques in sensor networks. Berlin/New York: Springer.

    MATH  Google Scholar 

  • Ganguly, A. R., Gama, J., Omitaomu, O. A., Gaber, M. M., & Vatsavai, R. R. (2009). Knowledge discovery from sensor data. Boca Raton: CRC.

    MATH  Google Scholar 

  • Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques (Series in data management systems). San Francisco: Kaufmann.

    Google Scholar 

  • Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering algorithms and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), 1650–1654.

    Article  Google Scholar 

  • Sebastiao, R., & Gama, J. (2007). Change detection in learning histograms from data streams. In Progress in artificial intelligence (Lecture notes in computer science, Vol. 4874). Berlin/Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Balzanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balzanella, A., Verde, R. (2013). Summarizing and Detecting Structural Drifts from Multiple Data Streams. In: Giusti, A., Ritter, G., Vichi, M. (eds) Classification and Data Mining. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28894-4_13

Download citation

Publish with us

Policies and ethics