Abstract
We present a novel hetero-associative memory based on dendritic neural computation. The computations in this model are based on lattice group operations. The proposed model does not suffer from the usual storage capacity problem and is extremely robust in the presence of various types of noise and data corruption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Steinbuch, K.: Automat und Mensch, 2nd edn. Springer, Heidelberg (1963)
Steinbuch, K., Piske, U.A.W.: Learning Matrices and Their Applications. IEEE Trans. on Electronic Computers, 846–862 (1963)
Steinbuch, K.: Automat und Mensch, 3rd edn. Springer, Heidelberg (1965)
Steinbuch, K.: Automat und Mensch, 4th edn. Springer, Heidelberg (1972)
Kohonen, T.: Correlation Matrix Memory. IEEE Trans. on Computers C-21, 353–359 (1972)
Anderson, J.A.: A simple neural network generating an interactive memory. Mathematical Biosciences 14, 197–220 (1972)
Kohonen, T.: Self-Organization and Associative Memories, 2nd edn. Springer, Berlin (1987)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences, USA 79, 2554–2558 (1982)
Hopfield, J.J.: Neurons With Graded Response Have Collective Computational Properties Like Those of Two State Neurons. Proc. of the National Academy of Sciences, USA 81, 3088–3092 (1984)
Hopfield, J.J., Tank, D.W.: Computing with neural circuits. Science 233, 625–633 (1986)
Ritter, G.X., Sussner, P.: Associative Memories Based on Lattice Algebra. In: IEEE Inter. Conf. Systems, Man, and Cybernetics, Orlando, FL, pp. 3570–3575 (October 1997)
Ritter, G.X., Sussner, P., Diaz de Leon, D.L.: Morphological Associative Memories. IEEE Trans. on Neural Networks 9, 281–293 (1998)
Ritter, G.X., Diaz de Leon, D.L., Sussner, P.: Morphological Bidirectional Associative Memories. Neural Networks 12, 851–867 (1999)
Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Single-Neuron Computation. IEEE Trans. on Neural Networks 14(2), 282–295 (2003)
Kaburlasos, V.G.: Towards a Unified Modeling and Knowledge Representation Based on Lattice Theory. Computational Inteligence 27(2006)
Kaburlasos, V.G., Ritter, G.X. (eds.): Computational Intelligence Based on Lattice Theory. SCI, vol. 67. Springer, Heidelberg (2007)
Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Endmember Determination In Hyperspectral Imagery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, ch. 4, vol. 169, pp. 113–168. Elsevier, San Diego (2010)
Kaburlasos, V.G.: Granular Enhancement of Fuzzy-ART/SOM Neural Classifyers Based on Lattice Theory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence based on Lattice Theory. SCI, vol. 67, pp. 3–23. Springer, Heidelberg (2007)
Graña, M., Villaverde, I., Moreno, R., Albizuri, F.X.: Convex Coordinates from Lattice Independent Sets of Visual Pattern Recognition. In: Kaburlasos, V.G., Ritter, G.X. (eds.). SCI, vol. 67, pp. 101–128. Springer, Heidelberg (2007)
Graña, M., Chyzhyk, D., García-Sebastián, M., Hernández, C.: Lattice Independent Component Analysis for functional Magnetic Resonance Imaging. Information Sciences 181, 1910–1928 (2011)
Chyzhyk, D., Graña, M.: Optimal Hyperbox Shrinking in Dendritic Computing Applied to Alzheimer’s Disease Detection in MRI. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 543–550. Springer, Heidelberg (2011)
Chyzhyk, D., Graña, Savio, A., Maiora, J.: Hybrid Dendritic Computing with Kernel-LICA applied to Alzheimer’s Disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)
Ritter, G.X., Urcid, G.: Perfect Recovery from Noisy Input Patterns with a Dendritic Lattice Associative Memory. In: Proceedings of the International Joint Conference on Neural Networks (IEEE/INNS), San Jose, CA, pp. 503–510 (2011)
Urcid, G., Ritter, G.X., Valvdiviezo, J.C.N.: Grayscale Image Recall from Imperfect Inputs with a Two Layer Dendritic Lattice Associative Memory. In: Proceedings of IEEE, 3rd Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, pp. 268–273 (2011)
Ritter, G.X., Urcid, G.: Learning in Lattice Neural Networks that Employ Dendritic Computing. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory. SCI, vol. 67, pp. 25–44. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ritter, G.X., Chyzhyk, D., Urcid, G., Graña, M. (2012). A Novel Lattice Associative Memory Based on Dendritic Computing. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-28931-6_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28930-9
Online ISBN: 978-3-642-28931-6
eBook Packages: Computer ScienceComputer Science (R0)