Skip to main content

A Novel Lattice Associative Memory Based on Dendritic Computing

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

We present a novel hetero-associative memory based on dendritic neural computation. The computations in this model are based on lattice group operations. The proposed model does not suffer from the usual storage capacity problem and is extremely robust in the presence of various types of noise and data corruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steinbuch, K.: Automat und Mensch, 2nd edn. Springer, Heidelberg (1963)

    MATH  Google Scholar 

  2. Steinbuch, K., Piske, U.A.W.: Learning Matrices and Their Applications. IEEE Trans. on Electronic Computers, 846–862 (1963)

    Google Scholar 

  3. Steinbuch, K.: Automat und Mensch, 3rd edn. Springer, Heidelberg (1965)

    MATH  Google Scholar 

  4. Steinbuch, K.: Automat und Mensch, 4th edn. Springer, Heidelberg (1972)

    Google Scholar 

  5. Kohonen, T.: Correlation Matrix Memory. IEEE Trans. on Computers C-21, 353–359 (1972)

    Article  Google Scholar 

  6. Anderson, J.A.: A simple neural network generating an interactive memory. Mathematical Biosciences 14, 197–220 (1972)

    Article  MATH  Google Scholar 

  7. Kohonen, T.: Self-Organization and Associative Memories, 2nd edn. Springer, Berlin (1987)

    Google Scholar 

  8. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences, USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  9. Hopfield, J.J.: Neurons With Graded Response Have Collective Computational Properties Like Those of Two State Neurons. Proc. of the National Academy of Sciences, USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  10. Hopfield, J.J., Tank, D.W.: Computing with neural circuits. Science 233, 625–633 (1986)

    Article  Google Scholar 

  11. Ritter, G.X., Sussner, P.: Associative Memories Based on Lattice Algebra. In: IEEE Inter. Conf. Systems, Man, and Cybernetics, Orlando, FL, pp. 3570–3575 (October 1997)

    Google Scholar 

  12. Ritter, G.X., Sussner, P., Diaz de Leon, D.L.: Morphological Associative Memories. IEEE Trans. on Neural Networks 9, 281–293 (1998)

    Article  Google Scholar 

  13. Ritter, G.X., Diaz de Leon, D.L., Sussner, P.: Morphological Bidirectional Associative Memories. Neural Networks 12, 851–867 (1999)

    Article  Google Scholar 

  14. Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Single-Neuron Computation. IEEE Trans. on Neural Networks 14(2), 282–295 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kaburlasos, V.G.: Towards a Unified Modeling and Knowledge Representation Based on Lattice Theory. Computational Inteligence 27(2006)

    Google Scholar 

  16. Kaburlasos, V.G., Ritter, G.X. (eds.): Computational Intelligence Based on Lattice Theory. SCI, vol. 67. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  17. Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Endmember Determination In Hyperspectral Imagery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, ch. 4, vol. 169, pp. 113–168. Elsevier, San Diego (2010)

    Google Scholar 

  18. Kaburlasos, V.G.: Granular Enhancement of Fuzzy-ART/SOM Neural Classifyers Based on Lattice Theory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence based on Lattice Theory. SCI, vol. 67, pp. 3–23. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Graña, M., Villaverde, I., Moreno, R., Albizuri, F.X.: Convex Coordinates from Lattice Independent Sets of Visual Pattern Recognition. In: Kaburlasos, V.G., Ritter, G.X. (eds.). SCI, vol. 67, pp. 101–128. Springer, Heidelberg (2007)

    Google Scholar 

  20. Graña, M., Chyzhyk, D., García-Sebastián, M., Hernández, C.: Lattice Independent Component Analysis for functional Magnetic Resonance Imaging. Information Sciences 181, 1910–1928 (2011)

    Article  MathSciNet  Google Scholar 

  21. Chyzhyk, D., Graña, M.: Optimal Hyperbox Shrinking in Dendritic Computing Applied to Alzheimer’s Disease Detection in MRI. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 543–550. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Chyzhyk, D., Graña, Savio, A., Maiora, J.: Hybrid Dendritic Computing with Kernel-LICA applied to Alzheimer’s Disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)

    Article  Google Scholar 

  23. Ritter, G.X., Urcid, G.: Perfect Recovery from Noisy Input Patterns with a Dendritic Lattice Associative Memory. In: Proceedings of the International Joint Conference on Neural Networks (IEEE/INNS), San Jose, CA, pp. 503–510 (2011)

    Google Scholar 

  24. Urcid, G., Ritter, G.X., Valvdiviezo, J.C.N.: Grayscale Image Recall from Imperfect Inputs with a Two Layer Dendritic Lattice Associative Memory. In: Proceedings of IEEE, 3rd Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, pp. 268–273 (2011)

    Google Scholar 

  25. Ritter, G.X., Urcid, G.: Learning in Lattice Neural Networks that Employ Dendritic Computing. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory. SCI, vol. 67, pp. 25–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ritter, G.X., Chyzhyk, D., Urcid, G., Graña, M. (2012). A Novel Lattice Associative Memory Based on Dendritic Computing. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics