Skip to main content

Using Genetic Algorithms to Improve Prediction of Execution Times of ML Tasks

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

Experimental procedures associated with Machine Learning (ML) techniques are usually computationally demanding. An important step for a conscientious allocation of ML tasks into resources is predicting their execution times. Previously, empirical comparisons using a Meta-learning framework indicated that Support Vector Machines (SVM) are suited for this problem; however, their performance is affected by the choice of parameter values and input features. In this paper, we tackle the issue by applying Genetic Algorithm (GA) to perform joint Feature Subset Selection (FSS) and Parameters Optimization (PO). At first, a GA is used for FSS+PO in SVMs with two kernel functions, independently. Later, besides FSS+PO an additional term is evolved to weight predictions of both models to build a combined regressor. An empirical investigation conducted for predicting execution times of 6 ML algorithms over 78 publicly available datasets unveils a higher accuracy when compared with the previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensusan, H., Kalousis, A.: Estimating the Predictive Accuracy of a Classifier. In: Flach, P., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 25–36. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Braga, P.L., Oliveira, A.L.I., Meira, S.R.L.: A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation. In: Proceedings of ACM-SAC, pp. 1788–1792. ACM (2008)

    Google Scholar 

  3. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61, 810–837 (2001)

    Article  Google Scholar 

  4. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  5. Chalimourda, A., Schölkopf, B., Smola, A.J.: Experimentally optimal nu in support vector regression for different noise models and parameter settings. Neural Netw. 17, 127–141 (2004)

    Article  MATH  Google Scholar 

  6. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1-3), 131–159 (2002)

    Article  MATH  Google Scholar 

  7. Congdon, C.B.: A comparison of genetic algorithm and other machine learning systems on a complex classification task from common disease research. Phd thesis, University of Michigan (1995)

    Google Scholar 

  8. Corchado, E., Abraham, A., de Carvalho, A.: Editorial: Hybrid intelligent algorithms and applications. Information Sciences 180, 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  9. Corchado, E., Graña, M., Wozniak, M.: Editorial: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  10. Fei, S.-W., Sun, Y.: Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm. Electric Power Systems Research 78(3), 507–514 (2008)

    Article  Google Scholar 

  11. Fröhlich, H., Chapelle, O., Schölkopf, B.: Feature selection for support vector machines using genetic algorithms. International Journal on Artificial Intelligence Tools 13(4), 791–800 (2004)

    Article  Google Scholar 

  12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. Huang, C.-L., Dun, J.-F.: A distributed pso-svm hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8, 1381–1391 (2008)

    Article  Google Scholar 

  14. Keerthi, S.S., Lin, C.-J.: Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput. 15, 1667–1689 (2003)

    Article  MATH  Google Scholar 

  15. Lin, H.T., Lin, C.J.: A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Tech. rep., Department of Computer Science, National Taiwan University (2003)

    Google Scholar 

  16. Mejía-Guevara, I., Kuri-Morales, Á.: Evolutionary Feature and Parameter Selection in Support Vector Regression. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 399–408. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs (2nd, extended edn.). Springer-Verlag New York, Inc., New York (1994)

    Google Scholar 

  18. Priya, R., de Souza, B.F., Rossi, A.L.D., de Carvalho, A.C.P.L.F.: Predicting execution time of machine learning tasks using metalearning. In: World Congress on Information and Communication Technologies 2011, pp. 1197–1203. IEEE Computer Society (2011)

    Google Scholar 

  19. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  20. Uyar, S., Sariel, S., Eryigit, G.: A Gene Based Adaptive Mutation Strategy for Genetic Algorithms. In: Deb, K., et al. (eds.) GECCO 2004, Part II. LNCS, vol. 3103, pp. 271–281. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Priya, R., de Souza, B.F., Rossi, A.L.D., de Carvalho, A.C.P.L.F. (2012). Using Genetic Algorithms to Improve Prediction of Execution Times of ML Tasks. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics