Skip to main content

Computational Complexity Reduction and Interpretability Improvement of Distance-Based Decision Trees

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

  • 1786 Accesses

Abstract

Classical decision trees proved to be very good induction systems providing accurate prediction and rule based representation. However, in some areas the application of the classical decision trees is limited and more advanced and more complex trees have to be used. One of the examples of such trees are distance based trees, where a node function (test) is defined by a prototype, distance measure and threshold. Such trees can be easily obtained from classical decision trees by initial data preprocessing. However, this solution dramatically increases computational complexity of the tree. This paper presents a clustering based approach to computational complexity reduction. It also discusses aspects of interpretation of the obtained prototype-threshold rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting and variants. ML 36, 105–142 (1999)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  5. Corchado, E., Abraham, A., de Carvalho, C.A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  6. Corchado, E., Grana, M., Woźniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  7. Duch, W., Grudziński, K.: Prototype based rules - new way to understand the data. In: IEEE International Joint Conference on Neural Networks, pp. 1858–1863. IEEE Press, Washington, D.C (2001)

    Google Scholar 

  8. Grąbczewski, K., Duch, W.: Heterogeneous Forests of Decision Trees. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 504–509. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

  10. Kordos, M., Blachnik, M., Wieczorek, T., Golak, S.: Neural Network Committees Optimized with Evolutionary Methods for Steel Temperature Control. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 42–51. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kordos, M., Blachnik, M., Wieczorek, T.: Temperature prediction in electric arc furnace with neural network tree. In: Honkela, T., et al. (eds.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 71–78. Springer, Heidelberg (2011)

    Google Scholar 

  12. Kordos, M., Blachnik, M., Perzyk, M., Kozłowski, J., Bystrzycki, O., Gródek, M., Byrdziak, A., Motyka, Z.: A Hybrid System with Regression Trees in Steel-Making Process. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 222–230. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Blachnik, M., Duch, W., Wieczorek, T.: Selection of Prototype Rules: Context Searching Via Clustering. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 573–582. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Landwehr, N., Mark Hall, E.F.: Logistic model trees. ML 95(1-2), 161–205 (2005)

    Google Scholar 

  15. Quinlan, J.R.: C 4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  16. Rosch, R.H.: Cognitive reference points. Cognitive Psychology 4(7) (1975)

    Google Scholar 

  17. Roth, I., Bruce, V.: Perception and Representation, 2nd edn. Open University Press (1995)

    Google Scholar 

  18. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  19. Duch, W., Blachnik, M.: Fuzzy Rule-Based Systems Derived from Similarity to Prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blachnik, M., Kordos, M. (2012). Computational Complexity Reduction and Interpretability Improvement of Distance-Based Decision Trees. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics