Skip to main content

On Ensemble Classifiers for Nonintrusive Appliance Load Monitoring

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Abstract

In this work we employ ensemble classifiers for the problem of nonintrusive appliance load monitoring. In practical scenarios the question arises how to efficiently and automatically learn statistical models for appliance recognition, which is an important step for various problems in process recognition, healthcare, and energy consulting. This work is an application study that analyzes multi-class support vector machines (SVMs), and K-nearest neighbors (KNN) in the problem domain of automatically recognizing appliances. By combining two types of classifiers with varying parameterizations to ensembles, we reduce the classification error, and increase the robustness of the classifier. In the experimental part we consider a field study with household appliances, and compare the classifiers w.r.t. various training set and neighborhood sizes. It turns out that the ensembles belong to the best classifiers in all training set scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Baranski, M., Voss, J.: Genetic algorithm for pattern detection in NIALM systems. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3462–3468 (2004)

    Google Scholar 

  3. Chang, H.-H., Yang, H.-T., Lin, C.-L.: Load Identification in Neural Networks for a Non-Intrusive Monitoring of Industrial Electrical Loads. In: Shen, W., Yong, J., Yang, Y., Barthès, J.-P.A., Luo, J. (eds.) CSCWD 2007. LNCS, vol. 5236, pp. 664–674. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Corchado, E., Abraham, A., de Carvalho, A.C.P.L.F.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  5. Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)

    Article  Google Scholar 

  6. Cover, T., Hart, P.: Nearest neighbor pattern classification 13, 21–27 (1967)

    Google Scholar 

  7. Fung, G.P.C., Yu, J.X., Wang, H., Cheung, D.W., Liu, H.: A Balanced Ensemble Approach to Weighting Classifiers for Text Classification. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 869–873. Springer, Heidelberg (2006)

    Google Scholar 

  8. Gieseke, F., Kramer, O., Airola, A., Pahikkala, T.: Speedy Local Search for Semi-Supervised Regularized Least-Squares. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 87–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Hart, G.W.: Nonintrusive appliance load monitoring 80(12), 1870–1891 (1992)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  11. Lin, Y.-H., Tsai, M.-S.: Applications of hierarchical support vector machines for identifying load operation in nonintrusive load monitoring systems. In: Intelligent Control and Automation (WCICA), pp. 688–693 (2011)

    Google Scholar 

  12. Opitz, D.W., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research (JAIR) 11, 169–198 (1999)

    MATH  Google Scholar 

  13. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line (Nominated for the Best Paper Award). In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann (1999)

    Google Scholar 

  16. Woods, K., Kegelmeyer, W.P., Bowyer, K.W.: Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 405–410 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, O. et al. (2012). On Ensemble Classifiers for Nonintrusive Appliance Load Monitoring. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics