Skip to main content

Mining Social Networks for Significant Friend Groups

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7240))

Included in the following conference series:

Abstract

The emergence of Web-based communities and hosted services such as social networking sites has facilitated collaboration and knowledge sharing between users. Hence, it has become important to mine this vast pool of data in social networks, which are generally made of users linked by some specific interdependency such as friendship. For any user, some groups of his friends are more significant than others. In this paper, we propose a tree-based algorithm to mine social networks to help these users to distinguish their significant friend groups from all the friends in their social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  2. Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends among friends in social networks. In: IEEE DASC (SCA) 2011, pp. 824–831 (2011)

    Google Scholar 

  3. Carrington, P.J., Scott, J., Wasserman, S. (eds.): Models and Methods in Social Network Analysis. Cambridge University Press (2005)

    Google Scholar 

  4. Fan, W., Yeung, K.H.: Virus propagation modeling in Facebook. In: ASONAM 2010, pp. 331–335 (2010)

    Google Scholar 

  5. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)

    Google Scholar 

  6. Lee, W., Lee, J.J.-H., Song, J.J., Eom, C.S.-H.: Maximum reliable tree for social network search. In: IEEE DASC (CSN) 2011, pp. 1243–1249 (2011)

    Google Scholar 

  7. Leung, C.K.-S., Carmichael, C.L.: Exploring social networks: a frequent pattern visualization approach. In: IEEE SocialCom 2010, pp. 419–424 (2010)

    Google Scholar 

  8. Leung, C.K.-S., Carmichael, C.L., Teh, E.W.: Visual Analytics of Social Networks: Mining and Visualizing Co-authorship Networks. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011, HCII 2011. LNCS (LNAI), vol. 6780, pp. 335–345. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discovering high utility itemsets. DKE 64(1), 198–217 (2008)

    Article  Google Scholar 

  10. Liu, H., Yu, P.S., Agarwal, N., Suel, T.: Guest editors’ introduction: social computing in the blogosphere. IEEE Internet Computing 14(2), 12–14 (2010)

    Article  Google Scholar 

  11. Liu, Y., Liao, W.-k., Choudhary, A.K.: A Two-Phase Algorithm for Fast Discovery of High Utility Itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Obradovic, D., Pimenta, F., Dengel, A.: Mining shared social media links to support clustering of blog articles. In: CASoN 2011, pp. 181–184 (2011)

    Google Scholar 

  13. Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in Twitter. In: ACM KDD 2011, pp. 430–438 (2011)

    Google Scholar 

  14. Tang, C., Ross, K., Saxena, N., Chen, R.: What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior in Facebook. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 344–356. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)

    Google Scholar 

  16. Weng, J., Lim, E.-P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influential twitterers. In: ACM WSDM 2010, pp. 261–270 (2010)

    Google Scholar 

  17. Xu, G., Zong, Y., Pan, R., Dolog, P., Jin, P.: On Kernel Information Propagation for Tag Clustering in Social Annotation Systems. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS (LNAI), vol. 6882, pp. 505–514. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: SDM 2004, pp. 482–486 (2004)

    Google Scholar 

  19. Ye, S., Wu, S.F.: Measuring Message Propagation and Social Influence on Twitter.com. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 216–231. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Yumoto, T., Sumiya, K.: Measuring Attention Intensity to Web Pages Based on Specificity of Social Tags. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 264–273. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, C.KS., Tanbeer, S.K. (2012). Mining Social Networks for Significant Friend Groups. In: Yu, H., Yu, G., Hsu, W., Moon, YS., Unland, R., Yoo, J. (eds) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol 7240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29023-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29023-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29022-0

  • Online ISBN: 978-3-642-29023-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics