Skip to main content

Collaborative Similarity Measure for Intra Graph Clustering

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7240))

Included in the following conference series:

Abstract

Assorted networks have transpired for analysis and visualization, including social community network, biological network, sensor network and many other information networks. Prior approaches either focus on the topological structure or attribute likeness for graph clustering. A few recent methods constituting both aspects however cannot be scalable with elevated time complexity. In this paper, we have developed an intra-graph clustering strategy using collaborative similarity measure (IGC-CSM) which is comparatively scalable to medium scale graphs. In this approach, first the relationship intensity among vertices is calculated and then forms the clusters using k-Medoid framework. Empirical analysis is based on density and entropy, which depicts the efficiency of IGC-CSM algorithm without compromising on the quality of the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley and Sons (2006)

    Google Scholar 

  2. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering Large Graphs via the Singular Value Decomposition. Machine Learning 56(1-3) (2004)

    Google Scholar 

  3. Dongen, S.: Graph Clustering by Flow Simulation, Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  4. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees. Journal of Internet Mathematics 1(4), 385–408 (2003)

    Article  MathSciNet  Google Scholar 

  5. Newman, M.: Detecting Community Structure in Networks. The European Physics Journal B 38, 321–330 (2004)

    Article  Google Scholar 

  6. Huang, X., Lai, W.: Clustering Graphs for Visualization via Node Similarities. Journal of Visual Languages and Computing 17, 225–253 (2006)

    Article  Google Scholar 

  7. Anand, R., Reddy, C.K.: Graph-Based Clustering with Constraints. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 51–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  9. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: Proc. 2007 Int. Conf. Knowledge Discovery and Data Mining (KDD 2007), San Jose, CA, pp. 824–833 (August 2007)

    Google Scholar 

  10. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  11. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: Proc. 2008 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 2008), Vancouver, Canada, pp. 567–580 (June 2008)

    Google Scholar 

  12. Marcopol, K., et al.: Scalable Discovery of Best Clusters on Large Graphs. Proceedings of VLDB Endowment 3(1) (2010)

    Google Scholar 

  13. Tiakas, E., et al.: Graph Node Clustering via Transitive Node Similarity. In: 14th Panhellenic Conference on Informatics (2010)

    Google Scholar 

  14. Zhou, Y., et al.: Graph Clustering Based on Structural/Attribute Similarities. In: Proceedings of VLDB Endowment, France (2009)

    Google Scholar 

  15. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–22 (1999)

    Google Scholar 

  16. Jaccard, P.: Etude Comparative de la Distribution Floraledansune Portion des Alpes et des Jura. Sociètè Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  17. Everitt, B.: Cluster Analysis, 3rd edn. Edward Arnold, London (1993)

    Google Scholar 

  18. Cheng, H., et al.: Clustering Large Attributed Graphs: A Balance between Structural and Attribute Similarities. ACM Transaction on Knowledge Discovery from Data 5(2) (February 2011)

    Google Scholar 

  19. Fredman, M., Tarjan, R.: Fibonacci Heaps and their Uses in Improved Network Optimization Algorithms. Journal of ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  20. Witsenburg, T., et al.: Improving the Accuracy of Similarity Measures by Using Link Information. In: International Symposium on Methodologies for Intelligent Systems, 9th edn., Poland (2011)

    Google Scholar 

  21. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregationfor graph summarization. In: Proc. 2008 ACM-SIGMOD Int.Conf. Management of Data (SIGMOD 2008), Vancouver, Canada, pp. 567–580 (June 2008)

    Google Scholar 

  22. Fredman, M., Tarjan, R.: Fibonacci Heaps and their Uses in ImprovedNetwork Optimization Algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nawaz, W., Lee, YK., Lee, S. (2012). Collaborative Similarity Measure for Intra Graph Clustering. In: Yu, H., Yu, G., Hsu, W., Moon, YS., Unland, R., Yoo, J. (eds) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol 7240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29023-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29023-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29022-0

  • Online ISBN: 978-3-642-29023-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics