Skip to main content

Context Sensitive Tag Expansion with Information Inference

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7238))

Included in the following conference series:

  • 1705 Accesses

Abstract

The exponential explosion of web image data on the Internet has been witnessed over the last few years. The precise labeling of these images is crucial to effective image retrieval. However, most existing image tagging methods discover the correlations from tag co-occurrence relationship, which leads to the limited scope of extended tags. In this paper, we study how to build a new information inference model over image tag datasets for more effective and complete tag expansion. Specifically, the proposed approach uses modified Hyperspace Analogue to Language (HAL) model instead of association rules or latent dirichlet allocations to mine the correlations between image tags. It takes advantage of context sensitive information inference to overcome the limitation caused by the tag co-occurrence based methods. The strength of this approach lies in its ability to generate additional tags that are relevant to a target image but may have weak co-occurrence relationship with the existing tags in the target image. We demonstrate the effectiveness of this proposal with extensive experiments on a large Flickr image dataset.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Citeulike, http://www.citeulike.org

  2. Delicious, http://www.delicious.com

  3. Flickr, http://www.flickr.com

  4. Bai, J., Song, D., Bruza, P., Nie, J.-Y., Cao, G.: Query expansion using term relationships in language models for information retrieval. In: CIKM, pp. 688–695 (2005)

    Google Scholar 

  5. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press (1997)

    Google Scholar 

  6. Burgess, C., Livesay, K., Lund, K.: Explorations in context space: Words, sentences, discourse. Discourse Processes 25(2/3), 211–257 (1998)

    Article  Google Scholar 

  7. Burgess, C., Lund, K.: Modeling parsing constraints with high-dimensional context space. Language and Cognitive Processes 12(2/3), 177–210 (1997)

    Article  Google Scholar 

  8. Datta, R., Ge, W., Li, J., Wang, J.Z.: Toward bridging the annotation-retrieval gap in image search. IEEE MultiMedia 14(3), 24–35 (2007)

    Article  Google Scholar 

  9. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2000)

    Google Scholar 

  10. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Information Science 32(2), 198–208 (2006)

    Article  Google Scholar 

  11. Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: SIGIR, pp. 531–538 (2008)

    Google Scholar 

  12. Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In: Proceedings of the 2009 ACM Conference on Recommender Systems, pp. 61–68 (2009)

    Google Scholar 

  13. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proceedings of the 17th ACM Conference on Hypertext and Hypermedia, pp. 31–40 (2006)

    Google Scholar 

  14. Moxley, E., Mei, T., Manjunath, B.S.: Video annotation through search and graph reinforcement mining. IEEE Transactions on Multimedia 12(3), 184–193 (2010)

    Article  Google Scholar 

  15. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW, pp. 327–336 (2008)

    Google Scholar 

  16. Song, D., Bruza, P.: Towards context sensitive information inference. JASIST 54(4), 321–334 (2003)

    Article  Google Scholar 

  17. Song, D., Bruza, P., Cole, R.: Concept learning and information inferencing on a high dimensional semantic space. In: Proceedings ACM SIGIR 2004 Workshop on Mathematical/Formal Methods in Information Retrieval (2004)

    Google Scholar 

  18. Wang, C., Jing, F., Zhang, L., Zhang, H.: Image annotation refinement using random walk with restarts. In: ACM Multimedia, pp. 647–650 (2006)

    Google Scholar 

  19. Wu, L., Yang, L., Yu, N., Hua, X.-S.: Learning to tag. In: WWW, pp. 361–370 (2009)

    Google Scholar 

  20. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag suggestions. In: Proceedings of the Collaborative Web Tagging Workshop at the WWW 2006 (2006)

    Google Scholar 

  21. Yang, Y., Huang, Z., Shen, H.T., Zhou, X.: Mining multi-tag association for image tagging. World Wide Web 14(2), 133–156 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, H., Huang, Z., Shao, J., Li, X. (2012). Context Sensitive Tag Expansion with Information Inference. In: Lee, Sg., Peng, Z., Zhou, X., Moon, YS., Unland, R., Yoo, J. (eds) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol 7238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29038-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29038-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29037-4

  • Online ISBN: 978-3-642-29038-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics