Abstract
The top-k similarity joins have been extensively studied and used in a wide spectrum of applications such as information retrieval, decision making, spatial data analysis and data mining. Given two sets of objects \(\mathcal U\) and \(\mathcal V\), a top-k similarity join returns k pairs of most similar objects from \(\mathcal U \times \mathcal V\). In the conventional model of top-k similarity join processing, an object is usually regarded as a point in a multi-dimensional space and the similarity between two objects is usually measured by distance metrics such as Euclidean distance. However, in many applications an object may be described by multiple values (instances) and the conventional model is not applicable since it does not address the distributions of object instances. In this paper, we study top-k similarity join queries over multi-valued objects. We apply quantile based distance to explore the relative instance distribution among the multiple instances of objects. Efficient and effective techniques to process top-k similarity joins over multi-valued objects are developed following a filtering-refinement framework. Novel distance, statistic and weight based pruning techniques are proposed. Comprehensive experiments on both real and synthetic datasets demonstrate the efficiency and effectiveness of our techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001 (2001)
Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD 1993 (1993)
Cheema, M.A., Lin, X., Wang, H., Wang, J., Zhang, W.: A unified approach for computing top-k pairs in multidimensional space. In: ICDE 2011 (2011)
Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J.S., Xia, Y.: Efficient join processing over uncertain data. In: CIKM 2006 (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. Medians and order statistics, 2nd edn., ch. 9. The MIT Press
Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair queries in spatial databases. In: SIGMOD 2000 (2000)
Elmasri, R., Navathe, S.: Fundamentals of database systems, 6th edn. (2011)
Han, W.-S., Kim, J., Lee, B.S., Tao, Y., Rantzau, R., Markl, V.: Cost-based predictive spatiotemporal join. In: TKDE 2009 (2009)
Hjaltason, G., Samet, H.: Incremental distance join algorithms for spatial databases. In: SIGMOD 1998 (1998)
Huang, Y.-W., Ning, J., Rundensteiner, E.A.: Spatial joins using r-trees: Breadth-first traversal with global optimizations. In: VLDB 1997 (1997)
Kriegel, H.-P., Kunath, P., Pfeifle, M., Renz, M.: Probabilistic Similarity Search on Uncertain Data. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 295–309. Springer, Heidelberg (2006)
Lee, M.-J., Whang, K.-Y., Han, W.-S., Transform-space, S.I.-Y.: view: Performing spatial join in the transform space using original-space indexes. In: TKDE 2006 (2006)
Lin, X., Zhang, Y., Zhang, W., Cheema, M.A.: Stochastic skyline operator. In: ICDE 2011 (2011)
Ljosa, V., Singh, A.K.: Top-k spatial join of probabilistic objects. In: ICDE 2008 (2008)
Meester, R.: A Natural Introduction to Probability Theory (2004)
Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP Operations in Spatial Data Warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)
Rigaux, P., Scholl, M., Voisard, A.: Spatial databases: With applications to gis (2001)
Sankaranarayanan, J., Alborzi, H., Samet, H.: Distance join queries on spatial networks. In: GIS 2006 (2006)
Yiu, M.L., Mamoulis, N., Tao, Y.: Efficient Quantile Retrieval on Multi-Dimensional Data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 167–185. Springer, Heidelberg (2006)
Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins over moving objects. In: ICDE 2008 (2008)
Zhang, W., Lin, X., Cheema, M.A., Zhang, Y., Wang, W.: Quantile-based knn over multi-valued objects. In: ICDE 2010 (2010)
Zheng, K., Fung, P., Zhou, X.: K nearest neighbor search for fuzzy objects. In: SIGMOD 2010 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, W., Xu, J., Liang, X., Zhang, Y., Lin, X. (2012). Top-k Similarity Join over Multi-valued Objects. In: Lee, Sg., Peng, Z., Zhou, X., Moon, YS., Unland, R., Yoo, J. (eds) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol 7238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29038-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-29038-1_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29037-4
Online ISBN: 978-3-642-29038-1
eBook Packages: Computer ScienceComputer Science (R0)