Skip to main content

Indexing Network Voronoi Diagrams

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7238))

Included in the following conference series:

Abstract

The Network Voronoi diagram and its variants have been extensively used in the context of numerous applications in road networks, particularly to efficiently evaluate various spatial proximity queries such as k nearest neighbor (kNN), reverse kNN, and closest pair. Although the existing approaches successfully utilize the network Voronoi diagram as a way to partition the space for their specific problems, there is little emphasis on how to efficiently find and access the network Voronoi cell containing a particular point or edge of the network. In this paper, we study the index structures on network Voronoi diagrams that enable exact and fast response to contain query in road networks. We show that existing index structures, treating a network Voronoi cell as a simple polygon, may yield inaccurate results due to the network topology, and fail to scale to large networks with numerous Voronoi generators. With our method, termed Voronoi-Quad-tree (or VQ-tree for short), we use Quad-tree to index network Voronoi diagrams to address both of these shortcomings. We demonstrate the efficiency of VQ-tree via experimental evaluations with real-world datasets consisting of a variety of large road networks with numerous data objects.

This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-0534761,IIS-0742811 and CNS-0831505 (CyberTrust), and in part from the METRANS Transportation Center, under grants from USDOT and Caltrans.Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank Prof. Ulrich Neumann for his insightful discussions and comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to cnn queries in a road network. In: VLDB (2005)

    Google Scholar 

  2. Erwig, M., Hagen, F.: The graph voronoi diagram with applications. Journal of Networks 36 (2000)

    Google Scholar 

  3. Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite keys. Acta Informatica (1974)

    Google Scholar 

  4. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD (1984)

    Google Scholar 

  5. Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Jensen, C.S., Kolářvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: GIS (2003)

    Google Scholar 

  7. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB (2004)

    Google Scholar 

  8. Kolahdouzan, M.R., Shahabi, C.: Continuous k-nearest neighbor queries in spatial network databases. In: STDBM (2004)

    Google Scholar 

  9. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD (2004)

    Google Scholar 

  10. NAVTEQ, www.navteq.com (accessed in May 2011)

  11. Nutanong, S., Tanin, E., Ali, M.E., Kulik, L.: Local network voronoi diagrams. In: SIGSPATIAL (2010)

    Google Scholar 

  12. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations — concepts and applications of voronoi diagrams (2000)

    Google Scholar 

  13. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: Concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. (2008)

    Google Scholar 

  14. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB (2003)

    Google Scholar 

  15. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD (1995)

    Google Scholar 

  16. Safar, M.: Group-nearest neighbors queries in spatial network databases. Journal of Geographical Systems (2008)

    Google Scholar 

  17. Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing on spatial networks. Multimedia Systems (2009)

    Google Scholar 

  18. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  19. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD (2008)

    Google Scholar 

  20. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: R+-tree: A dynamic index for multi-dimensional objects. In: VLDB 1987 (1987)

    Google Scholar 

  21. Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Taniar, D., Safar, M., Tran, Q.T., Rahayu, J.W., Park, J.H.: Spatial network rnn queries in gis. Comput. J. (2011)

    Google Scholar 

  23. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality. In: VLDB (2004)

    Google Scholar 

  24. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)

    Google Scholar 

  25. Huang, X., Jensen, C.S., Å altenis, S.: The Island Approach to Nearest Neighbor Querying in Spatial Networks. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Xuan, K., Zhao, G., Taniar, D., Rahayu, J.W., Safar, M., Srinivasan, B.: Voronoi-based range and continuous range query processing in mobile databases. J. Comput. Syst. Sci. (2011)

    Google Scholar 

  27. Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.: Network voronoi diagram based range search. In: Advanced Information Networking and Applications

    Google Scholar 

  28. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. In: ICDE (2005)

    Google Scholar 

  29. Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbors in large graphs. In: ICDE (2005)

    Google Scholar 

  30. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD (2003)

    Google Scholar 

  31. Zhao, G., Xuan, K., Taniar, D., Safar, M., Gavrilova, M., Srinivasan, B.: Multiple Object Types KNN Search Using Network Voronoi Diagram. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 819–834. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Zheng, B., Lee, D.L.: Semantic Caching in Location-Dependent Query Processing. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 97–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demiryurek, U., Shahabi, C. (2012). Indexing Network Voronoi Diagrams. In: Lee, Sg., Peng, Z., Zhou, X., Moon, YS., Unland, R., Yoo, J. (eds) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol 7238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29038-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29038-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29037-4

  • Online ISBN: 978-3-642-29038-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics