Abstract
Do people in a crowd behave like a set of isolated individuals or like a cohesive group? Studies of crowd modeling usually consider pedestrian behavior either from the point of view of an isolated individual or from that of large swarms. We introduce here a study of small crowds walking towards a common goal and propose to make the link between individual behavior and crowd dynamics. Data show that participants, even though not instructed to behave collectively, do form a cohesive group and do not merely treat one another as obstacles. We present qualitative and quantitative measurements of this collective behavior, and propose a first set of patterns characterizing such behavior. This work is part of a wider effort to test crowd models against observed data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)
Costa, M.: Interpersonal distances in group walking. J. Nonverbal Behav. 34, 15–26 (2010)
Duchon, A.P., Warren, W.H.: A visual equalization strategy for locomotor control: of honeybees, robots, and humans. Psychological Science 21, 183–202 (2002)
Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance 29, 343–362 (2003)
Fajen, B.R., Warren, W.H.: Behavioral dynamics of intercepting a moving target. Exp. Brain Res. 180, 303–319 (2007)
Gibson, J.J.: Visually controlled locomotion and visual orientation in animals. Ecological Psychology 10, 161–176 (1998); (Reprinted from British Journal of Psychology 49, 182–194 (1958))
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991 (2005)
Heigeas, L., Luciani, A., Thollot, J., Castagné, N.: A physically-based particle model of emergent crowd behaviors. In: Graphicon (2003), http://artis.imag.fr/Publications/2003/HLTC03
Helbing, D.: A mathematical model for the behavior of pedestrians. Behavioral Science 36, 298–310 (1991)
Helbing, D.: Modelling the evolution of human trail systems. Nature 388, 47–50 (1997)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)
Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 81, 339–352 (2005)
Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2007), http://portal.acm.org/citation.cfm?id=1272706
Moussaid, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society B (2009)
Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS ONE 5(4), e10047 (2010)
Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 152–164 (2001)
Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. EUROGRAPHICS, Computer Graphics Forum 26, 665–674 (2007)
Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)
Sakuma, T., Mukai, T., Kuriyama, S.: Psychological model for animating crowded pedestrians. Computer Animation & Virtual Worlds 16(3-4), 343–351 (2005), http://doi.wiley.com/10.1002/cav.105
Schoner, G., Dose, M.: A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robotics and Autonomous Systems 10, 253–267 (1992)
Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Challenges in crowd simulation. In: Proceedings of the 2009 International Conference on Cyber Worlds, Washington, DC, USA, pp. 1–12 (2009), http://dx.doi.org/10.1109/CW.2009.23
Thalmann, D., Musse, S.R.: Crowd simulation. Springer, Heidelburg (2007), http://books.google.com/books?id=-aY5V-ykawcC
Thomas, R., Donikian, S.: A Spatial Cognitive Map and a Human-Like Memory Model Dedicated to Pedestrian Navigation in Virtual Urban Environments. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 421–438. Springer, Heidelberg (2007)
Warren, W.H., Fajen, B.R.: Behavioral Dynamics of Visually Guided Locomotion. In: Understanding Complex Systems, pp. 45–75. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonneaud, S., Rio, K., Chevaillier, P., Warren, W.H. (2012). Accounting for Patterns of Collective Behavior in Crowd Locomotor Dynamics for Realistic Simulations. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M. (eds) Transactions on Edutainment VII. Lecture Notes in Computer Science, vol 7145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29050-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-29050-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29049-7
Online ISBN: 978-3-642-29050-3
eBook Packages: Computer ScienceComputer Science (R0)