Skip to main content

Computing a Hierarchical Static Order for Decision Diagram-Based Representation from P/T Nets

  • Chapter
Transactions on Petri Nets and Other Models of Concurrency V

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 6900))

  • 604 Accesses

Abstract

State space generation suffers from the typical combinatorial explosion problem when dealing with industrial specifications. In particular, memory consumption while storing the state space must be tackled to verify safety properties. Decision Diagrams are a way to tackle this problem. However, their performance strongly rely on the way variables encode a system. Another way to fight combinatorial explosion is to hierarchically encode the state space of a system.

This paper presents how we mix the two techniques via the hierarchization of a precomputed variable order. This way we obtain a hierarchical static order for the variables encoding a system. This heuristic was implemented and exhibits good performance.

This work was supported by FEDER Île-de-France/System@tic—free software thanks to the NEOPPOD project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: ACM Great Lakes Symposium on VLSI, pp. 116–119. ACM (2003)

    Google Scholar 

  2. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebric decision diagrams and their applications. Formal Methods in System Design 10, 171–206 (1997)

    Article  Google Scholar 

  3. Bollig, B., Wegener, I.: Improving the variable ordering of obdds is np-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)

    Article  MATH  Google Scholar 

  4. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: 27th Annual ACM IEEE Design Automation Conference, pp. 40–45. ACM (1991)

    Google Scholar 

  5. Brayton, R., Hachtel, G., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng, S., Edwards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R., Sarwary, S., Staple, T., Swamy, G., Villa, T.: Vis: A System for Verification and Synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Bryant, R.: Graph-based algorithms for boolean function manipulation C-35(8), 677–691 (1986)

    Google Scholar 

  7. Buchs, D., Hostettler, S.: Sigma decision diagrams. In: Corradini, A. (ed.) TERMGRAPH 2009: Premiliminary Proceedings of the 5th International Workshop on Computing with Terms and Graphs, number TR-09-05, Università di Pisa, pp. 18–32 (2009)

    Google Scholar 

  8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: 5th Annual IEEE Symposium on Logic in Computer Science, pp. 428–439 (1990)

    Google Scholar 

  9. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Transactions on Computers 42(11), 1343–1360 (1993)

    Article  Google Scholar 

  10. Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.: The NEO Protocol for Large-Scale Distributed Database Systems: Modelling and Initial Verification. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 145–164. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-space generation. Formal Methods in System Design 31(1), 63–100 (2007)

    Article  MATH  Google Scholar 

  12. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An Efficient Iteration Strategy for Symbolic State Space Generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Ciardo, G., Miner, A.S.: Smart: Simulation and markovian analyzer for reliability and timing, p. 60. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  14. Ciardo, G., Trivedi, K.: A decomposition approach for stochastic reward net models. Perf. Eval. 18, 37–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informaticae 1, 115–138 (1971)

    Article  MathSciNet  Google Scholar 

  18. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundamenta Informaticae 94(3-4), 413–437 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Heiner, M., Schwarick, M., Tovchigrechko, A.: DSSZ-MC - A Tool for Symbolic Analysis of Extended Petri Nets. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 323–332. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Hong, S., Paviot-Adet, E., Kordon, F.: PNXDD model checkers (2010), https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki

  22. Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the Formal Verification of Middleware Behavioral Properties. In: 9th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004), pp. 139–157. Elsevier (2004)

    Google Scholar 

  23. Kordon, F., Linard, A., Paviot-Adet, E.: Optimized Colored Nets Unfolding. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 339–355. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Linard, A., Paviot-Adet, E., Kordon, F., Buchs, D., Charron, S.: polyDD: Towards a Framework Generalizing Decision Diagrams. In: 10th International Conference on Application of Concurrency to System Design (ACSD 2010), Braga, Portugal, pp. 124–133. IEEE Computer Society (2010)

    Google Scholar 

  25. Miner, A.S., Ciardo, G.: Efficient Reachability Set Generation and Storage using Decision Diagrams. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 6–25. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Letters 12(3), 115–116 (1981)

    Article  MATH  Google Scholar 

  27. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient BDD/MDD construction. Technical report, UC Riverside (2008)

    Google Scholar 

  28. Schmidt, K.: How to Calculate Symmetries of Petri Nets. Acta Informaticae 36(7), 545–590 (2000)

    Article  MATH  Google Scholar 

  29. Strehl, K., Thiele, L.: Symbolic model checking of process networks using interval diagram techniques. In: ICCAD 1998: Proceedings of the 1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 686–692. ACM, New York (1998)

    Chapter  Google Scholar 

  30. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Diagrams and Regular Models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S. (2012). Computing a Hierarchical Static Order for Decision Diagram-Based Representation from P/T Nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds) Transactions on Petri Nets and Other Models of Concurrency V. Lecture Notes in Computer Science, vol 6900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29072-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29072-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29071-8

  • Online ISBN: 978-3-642-29072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics