Abstract
In 1998, Boneh, Durfee and Frankel described several attacks against RSA enabling an attacker given a fraction of the bits of the private exponent d to recover all of d. These attacks were later improved and extended in various ways. They however always consider that the private exponent d is smaller than the RSA modulus N. When it comes to implementation, d can be enlarged to a value larger than N so as to improve the performance (by lowering its Hamming weight) or to increase the security (by preventing certain side-channel attacks). This paper studies this extended setting and quantifies the number of bits of d required to mount practical partial key exposure attacks. Both the cases of known most significant bits (MSBs) and least significant bits (LSBs) are analyzed. Our results are based on Coppersmith’s heuristic methods and validated by practical experiments run through the SAGE computer-algebra system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)
Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)
Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. IEEE Transactions on Information Theory 46(4), 1339–1349 (2000), extended abstract in Proc. of EUROCRYPT 1998
Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998)
Cohen, G.D., Lobstein, A., Naccache, D., Zémor, G.: How to Improve an Exponentiation Black-Box. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 211–220. Springer, Heidelberg (1998)
Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)
Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)
Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)
Coron, J.S.: Finding Small Roots of Bivariate Integer Polynomial Equations Revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–505. Springer, Heidelberg (2004)
Coron, J.S.: Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394. Springer, Heidelberg (2007)
Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)
Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer, Heidelberg (2009)
Herrmann, M., May, A.: Maximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)
Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)
Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)
Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-exponents smaller than N 0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007)
Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. Journal of Cryptographic Engineeering 1(1), 5–27 (2011)
Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)
May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis, University of Paderborn (2003)
Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences 13(3), 300–317 (1976)
Sarkar, S.: Partial Key Exposure: Generalized Framework to Attack RSA. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 76–92. Springer, Heidelberg (2011)
Sarkar, S., Sen Gupta, S., Maitra, S.: Partial Key Exposure Attack on RSA – Improvements for Limited Lattice Dimensions. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010)
Shoup, V.: Number Theory Library (Version 5.5.2). A library for doing Number Theory (2011), http://www.shoup.net/ntl
Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) Advances in Cryptology, Proceedings of CRYPTO 1983, pp. 51–67. Plenum Press (1984)
Simmons, G.J.: The Subliminal Channel and Digital Signatures. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer, Heidelberg (1985)
Stein, W.A., et al.: Sage Mathematics Software (Version 4.7). The Sage Development Team (2011), http://www.sagemath.org
Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)
Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John Wiley & Sons (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Joye, M., Lepoint, T. (2012). Partial Key Exposure on RSA with Private Exponents Larger Than N . In: Ryan, M.D., Smyth, B., Wang, G. (eds) Information Security Practice and Experience. ISPEC 2012. Lecture Notes in Computer Science, vol 7232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29101-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-29101-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29100-5
Online ISBN: 978-3-642-29101-2
eBook Packages: Computer ScienceComputer Science (R0)