Skip to main content

Scheduling Jobs on Identical and Uniform Processors Revisited

  • Conference paper
Approximation and Online Algorithms (WAOA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7164))

Included in the following conference series:

Abstract

We study the problem of scheduling jobs on uniform processors with the objective to minimize the makespan. In scheduling theory this problem is known as Q||C max . We present an EPTAS for scheduling on uniform machines avoiding the use of an MILP or ILP solver. Instead of solving (M)ILPs we solve the LP-relaxation and use structural information about the “closest” ILP solution. For a given LP-solution x we consider the distance to the closest ILP solution y in the infinity norm, i.e. ||x − y|| ∞ . We call this distance \(\max\mbox{-gap}(A_\delta)\), where A δ is the constraint matrix of the considered (I)LP. For identical machines and δ = Θ(ε) the matrix A δ has integral entries in {0,…,(1 + δ)/δ} and O(1/δlog(1/δ)) rows representing job sizes and \(2^{O(1/\delta\log^2(1/\delta))}\) columns representing configurations of jobs, so that the column sums are bounded by (1 + δ)/δ. The running-time of our algorithm is \(2^{O(1/\varepsilon \log(1/\varepsilon )\log(C(A_\delta))}+O(n\log n)\) where C(A δ ) denotes an upper bound for \(\max\mbox{-gap}(A_\delta)\). Furthermore, we can generalize the algorithm for uniform machines and obtain a running-time of \(2^{O(1/\varepsilon \log(1/\varepsilon )\log(C(\tilde{A}_\delta))}+poly(n)\), where \(\tilde{A}_\delta\) is the constraint matrix for a sub-problem considered in this case. In both cases we show that \(C(A_\delta),C(\tilde{A}_\delta)\le 2^{O(1/\varepsilon \log^2(1/\varepsilon ))}\). Consequently, our algorithm has running-time at most \(2^{O(1/\varepsilon ^2 \log^3(1/\varepsilon ))}+O(n\log n)\) for identical machines and \(2^{O(1/\varepsilon ^2 \log^3(1/\varepsilon ))}+poly(n)\) for uniform machines, the same as in [11]. But, to our best knowledge, no instance is known to take on the value \(2^{O(1/\varepsilon \log^2(1/\varepsilon ))}\) for \(\max\mbox{-gap}(A_\delta)\) or \(\max\mbox{-gap}(\tilde{A}_\delta)\). If \(C(\tilde{A}_\delta),C(A_\delta)\le poly(1/\varepsilon )\), the running-time of the algorithm would be \(2^{O(1/\varepsilon \log^2(1/\varepsilon ))}+poly(n)\) and thus improve the result in [11].

Research supported by German Research Foundation (DFG) project JA 612/14-1, “Design and analysis of efficient polynomial approximation schemes for scheduling and related optimization problems”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. Journal on Scheduling 1, 55–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Mathematical Programming 34, 251–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eisenbrand, F., Shmonin, G.: Caratheodory bounds for integer cones. Operations Research Letters 34, 564–568 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gonzales, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM Journal on Computing 6, 155–166 (1977)

    Article  MathSciNet  Google Scholar 

  5. Graham, R.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1987)

    Google Scholar 

  7. Hochbaum, D.S.: Various notions of approximations: good, better, best, and more. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, ch. 9, pp. 346–398. Prentice Hall (1997)

    Google Scholar 

  8. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: practical and theoretical results. Journal of the ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  9. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17, 539–551 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horowitz, R., Sahni, S.: Exact and approximate algorithms for scheduling non-identical processors. Journal of the ACM 23, 317–327 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jansen, K.: A fast approximation scheme for the multiple knapsack problem. To appear in: International Conference on Current Trends in Theory and Practise of Computer Science, SOFSEM 2012 (2012)

    Google Scholar 

  13. Jansen, K., Robenek, C.: Scheduling on uniform processors revisited, Technical Report, University of Kiel

    Google Scholar 

  14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research 12, 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 24, 259–272 (1990)

    Article  MathSciNet  Google Scholar 

  17. Leung, J.: Bin packing with restricted piece sizes. Information Processing Letters 31, 145–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, K., Robenek, C. (2012). Scheduling Jobs on Identical and Uniform Processors Revisited. In: Solis-Oba, R., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2011. Lecture Notes in Computer Science, vol 7164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29116-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29116-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29115-9

  • Online ISBN: 978-3-642-29116-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics