Abstract
This paper presents an extension of the ILS algorithm, called ID-ILS, by introducing new local search devices that enforce an efficient tradeoff of intensification and diversification. Experiments performed on the DIMACS benchmarks show that our method is competitive with the best coloring algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burke, E.K., Marecek, J., Parkes, A.J., Rudová, H.: A supernodal formulation of vertex colouring with applications in course timetabling. Annals OR 179(1), 105–130 (2010)
Gamache, M., Hertz, A., Ouellet, J.O.: A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding. Computers & OR 34(8), 2384–2395 (2007)
Malaguti, E., Toth, P.: A survey on vertex coloring problems. Intl. Trans. in Op. Res. 17(1), 1475–3995 (2010)
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & OR 35(3), 960–975 (2008)
Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)
Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Applied Mathematics 156(13), 2551–2560 (2008)
Morgenstern, C.: Distributed coloration neighborhood search. DIMACS Series, vol. 26, pp. 335–357. Providence, RI (1996)
Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63(3), 437–461 (1996)
Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)
Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)
Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing 20(2), 302–316 (2008)
Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Handbook of Metaheuristics, vol. 146, pp. 363–397. Springer, New York (2010)
Linhares, A., Yanasse, H.: Search intensity versus search diversity: a false trade off? Appl. Intell. 32(3), 279–291 (2010)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
Neveu, B., Trombettoni, G., Glover, F.: ID Walk: A Candidate List Strategy with a Simple Diversification Device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 423–437. Springer, Heidelberg (2004)
Trick, M.: Computational symposium: Graph coloring and its generalizations. Cornell University, Ithaca, NY (2002), http://mat.gsia.cmu.edu/COLOR02/
Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. European Journal of Operational Research 151(2), 379–388 (2003)
Loudni, S., Boizumault, P., Levasseur, N.: Advanced generic neighborhood heuristics for vns. Eng. Appl. of AI 23(5), 736–764 (2010)
Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Proceedings of the Comput. Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA, pp. 112–125 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loudni, S. (2012). Intensification/Diversification-Driven ILS for a Graph Coloring Problem. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-29124-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29123-4
Online ISBN: 978-3-642-29124-1
eBook Packages: Computer ScienceComputer Science (R0)