Abstract
In this paper we propose a metaheuristic algorithm for the Stacker Crane Problem. This is an NP-hard arc routing problem whose name derives from the practical problem of operating a crane. Here we present a formulation and a lower bound for this problem and propose a metaheuristic algorithm based on the combination of a Multi-start and an Iterated Local Search procedures. Computational results on a large set of instances are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belenguer, J.M., Benavent, E., Labadi, N., Prins, C., Reghioui, M.: Split Delivery Capacitated Arc Routing Problem: Lower Bound and Metaheuristic. Transportation Science 44, 206–220 (2010)
Benavent, E., Corberán, A., Sanchis, J.M.: A metaheuristic for the min−max windy rural postman problem with K vehicles. Computational Management Science 7, 269–287 (2010)
Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. TOP 15, 1–31 (2007)
Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Graduate School of Industrial Administration, Carnegie Mellon University (1976)
Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The Asymmetric Traveling Salesman Problem: Algorithms, Instance Generators, and Tests. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 32–59. Springer, Heidelberg (2001)
Eiselt, H.A., Gendreau, M., Laporte, G.: Arc Routing Problems, Part II: The Rural Postman Problem. Operations Research 43, 399–414 (1995)
Frederickson, G.N., Hecht, M.S., Kim, C.E.: Aproximation Algorithms for some routing problems. SIAM Journal on Computing 7, 178–193 (1978)
Guan, M.: Graphic programming using odd or even points. Chinese Mathematics 1, 237–277 (1962)
Hassin, R., Khuller, S.: z-Approximations. Journal of Algorithms 41, 429–442 (2001)
Hertz, A., Laporte, G., Nachen-Hugo, P.: Improvement procedures for the undirected rural postman problem. INFORMS Journal on Computing 11, 53–62 (1999)
Laporte, G.: Modeling and solving several classes of arc routing problems as traveling salesman problems. Computers & Operations Research 24, 1057–1061 (1997)
Lenstra, J.K., Rinnooy Kan, A.H.G.: On general routing problem. Networks 6, 273–280 (1976)
Lourenço, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353 (2002)
Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24, 1097–1100 (1997)
Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4, 35–64 (1974)
Srour, F.J.: Dissecting drayage: an examination if structure, information, and control in drayage operations. ERIM Ph.D. Series reseaarch in management, Erasmus Research Institute in Management, 1786 (2010) ISBN978-90-5892-226-7
Srour, F.J., van de Velde, S.: Are stacker crane problems easy? A statistical study. Computers & Operations Research (2011) doi:10.1016/j.cor.2011.06.017
Zhang, L.: Simple Heuristics for some variants on the traveling salesman problem. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1175–1178 (1992)
Zhang, L., Zheng, W.: Genetic coding for solving both the stacker crane problem and its k-variant. In: IEEE International Conference on Systems, Man and Cybernetics 1995, pp. 1061–1066 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ávila, T., Corberán, Á., Plana, I., Sanchis, J.M. (2012). An ILS-Based Metaheuristic for the Stacker Crane Problem. In: Hao, JK., Middendorf, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2012. Lecture Notes in Computer Science, vol 7245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29124-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-29124-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29123-4
Online ISBN: 978-3-642-29124-1
eBook Packages: Computer ScienceComputer Science (R0)