
ar
X

iv
:1

10
9.

44
04

v2
 [

cs
.C

R
]

23
 F

eb
 2

01
2

1

Mitigation of Random Query String DoS via Gossip
Stefano Ferretti, Vittorio Ghini

Department of Computer Science, University of Bologna
Bologna, Italy

{sferrett, ghini}@cs.unibo.it

Abstract—This paper presents a mitigation scheme to cope with
the random query string Denial of Service (DoS) attack, which is
based on a vulnerability of current Content Delivery Networks
(CDNs). The attack exploits the fact that edge servers composing
a CDN, receiving an HTTP request for a resource with an
appended random query string never saw before, ask the origin
server for a (novel) copy of the resource. Such characteristics
can be employed to take an attack against the origin server
by exploiting edge servers. Our strategy adopts a simple gossip
protocol executed by edge servers to detect the attack. Based
on such a detection, countermeasures can be taken to protect
the origin server and the CDN against the attack. We provide
simulation results that show the viability of our approach.

I. I NTRODUCTION

In two recent papers, a Denial of Service (DoS) attack has
been discussed that exploits a vulnerability of current Content
Delivery Networks (CDNs) [6], [7]. CDNs are commonly be-
lieved to offer their customers protection against application-
level DoS attacks [5]. In fact, it is well known that, due to its
vast resources, a CDN can absorb typical DoS attacks without
causing any noticeable effect to users. However, authors of[7]
have found an attack where the presence of a CDN actually
amplifies the attack against a customer Web site.

A CDN is composed of severaledge serversthat are
utilized to answer users’ requests. Usually, a request to a Web
site (origin server) employing CDN technologies is invisibly
routed to these other nodes that maintain replicated contents
geographically distributed across the CDN. Upon a request
routed to an edge server, if it does not have the content, which
might be a large file, it retrieves it from the origin server where
the Web site is hosted. Then, it passes that resource to the
user. From that moment, the edge server maintains a copy of
the resource; this way, subsequent requests for that content
might be successfully completed without retrieving again that
resource from the origin server. This operation mode allows
to distribute the workload and protects the origin server from
being swamped with requests.

According to [7], the basic problem is that based on the
current implementation of CDNs, edge servers are not allowed
to manage “query strings”. A query string is a string that is
appended to the URL the client is targeting; these strings are
usually employed to communicate parameters to the server
during some HTTP request. Now, since edge servers do not
contain any logic related to the Web site, but they simply
maintain replicated resources to distribute the load, whenthey
receive some HTTP request with a random query string which
is added to a URL, they treat such a request as new and pass

it on to the origin server. The problem is that if the origin
server is not expecting a query string, it removes it from the
HTTP request and supplies the file. Summing up, if an attacker
asks an edge server for a resource and appends to that request
a random query string, the edge server will request such a
resource to the origin server in turn, even if it already has it.
For this request, the origin server sends such a resource to the
edge server.

This way, an attacker can force an edge server to retrieve
a copy of a large file from the origin server several times.
Not only, it has been noticed that if the attacker cancels
the connection immediately after requesting the resource,that
resource transmission from the origin server to the edge server
continues anyway. A DoS attack can thus be implemented as
follows [7]. The attacker can retrieve a list of edge servers
and send HTTP requests (with random query strings appended
to such requests) to a large number of edge servers from a
single machine. For each single request, the connection can
be canceled after a while; hence, each single request requires
little computing power.

Such random query string DoS attack is directed towards the
origin server, that spends a lot of its work and its bandwidth
to send such resources to several, distinct edge servers. Itis
shown that a single attack can have a long-lasting effect on
the origin server.

To cope with it, approaches such as data mining would at
most enable to understand that an attack has been done to
a server, ex-post. Some mitigation schemes are outlined in
[7], that nevertheless do not solve completely the problem.
For instance, to protect against the random query string
vulnerability, a content provider can setup its CDN service
so that only URLs without query strings are accelerated by
the CDN. However, this limits the flexibility of the CDN. In
response to the identification of such a threat of CDNs, it
seems that no modifications are going to be accomplished [6].

To prevent the attacker from hiding behind a CDN, the edge
server can pass the client’s IP address to the origin server any
time it forwards a request to the origin. This can be done by
adding an optional HTTP header into the request. Of course,
the attacker can still attempt to hide by coming through its
own intermediaries, such as a botnet, or public Web proxies
[1], [7].

In this work, we propose a simple strategy to face this
attack. The idea is to resort to a simple gossip protocol among
edge servers (and the origin server). Every time a request with
a false query string is received by the origin server from an
edge server, the origin server answers by sending the requested

http://arxiv.org/abs/1109.4404v2

2

Attacker es1 es2 esn os...

Fig. 1. Random query string DoS attack.

resource, as usual. However, it informs the edge server (via
some additional information) that the query string was a false
one. Of course, such information does not mean that the user
is a malicious node, the request might be malformed for a
number of other reasons. In any case, the edge server transmits
an alert of an such erroneous request to other edge servers, via
a gossip algorithm. This way, edge servers can become aware
of a random query string DoS attack, if more edge servers
notice that an high number of erroneous query string requests
have been generated for a particular origin site. Upon detection
of the attack, appropriate schemes may be adopted to solve the
problem. For instance, edge servers can stop sending requests
containing appended query strings to the origin server. We
provide some simulation results that confirm that such a simple
approach can be adopted to detect a random query string DoS
attack, by just adding such a gossip algorithm between servers,
without altering the basic behavior of the origin site and edge
servers.

A final remark is related to the use of CDNs within clouds,
and in general to the integration between these two worlds
[?], [?]. These types of attacks may represent a possible threat
for cloud technologies, where the allocation of the number of
nodes (e.g. edge servers) is optimized based on the traffic and
the workload the service is subject to. Our solution can be
viably exploited also within these kinds of architectures.

The remainder of the paper is organized as follows. Section
II outlines the random query string DoS attack. Section III
presents the approach proposed in this work to cope with
it. Section IV describes the simulation scenario and obtained
results. Finally, Section V provides some concluding remarks.

II. RANDOM QUERY STRING DOS ATTACK

Figure 1 shows how the random query string QoS attack
works. For a detailed discussion the reader may refer to [7].
First, the attacker needs to collect the addresses of edge
serversesi; there are several mechanisms to obtain their IP
addresses [?], [7]. Then, it starts to make HTTP requests
for some resources belonging to the origin serveros to edge
servers; it appends random query strings to such requests, so
that eachesi will ask os to provide it the resource. After a
while, the attacker can cancel the HTTP request by closing the
connection withesi. For each received request,os will send
the requested resource to the correspondingesi nevertheless.

In the figure, requests from the attacker to the edge servers
and requests from the edge servers to the origin server are
depicted as horizontal lines, differently to resource transmis-
sions from the origin server, to stress the fact that requests
are lightweight, almost instantaneous messages, while file

transmissions can take a while to be completed. This clearly
wastes computational and communication resources of the
origin server, and may cause a DoS.

III. C OPING WITH RANDOM QUERY STRING DOS

The target of a random query string DoS attack is the origin
server. In fact, nodes in the CDN (edge servers) are exploited
by the attacker to create a burst of requests towards it. There
are several problems concerned with mechanisms that simply
try to detect such an attack at the origin server. For instance,
one might try to determine the attacker by looking at the source
of the request. However, the attacker may resort to mechanisms
to vary the IP address, or it can hide behind some public
proxy. Another problem is that the attacker may change the
file requested through edge servers; hence the origin server
should look at all incoming requests. This implies an high
computational load for the control. Summing up, the origin
server cannot do much by itself.

On the other hand, to tackle the problem it is probably
better to avoid some complicated coordination scheme that
involves all the edge servers for each request. In fact, this
could easily slow down the edge servers responsiveness and
strongly impact the effectiveness and the general performance
of the CDN.

In this sense, the use of gossip algorithms could be of help
[3], [4]. Indeed, it has been recognized that gossip schemescan
easily spread information through networks. In this section, we
propose a scheme that employs a gossip algorithm among edge
servers to detect a random query string DoS attack.

A. Overview of the Approach

The scheme requires a simple extension at the origin and
edge server and works as follows. Any time the origin server
os receives a request with a false query string from an edge
serveresi (as made during the attack),os replies as usual by
discarding the invalid query string and sending the resource.
But in addition,os alertsesi that the query string was invalid.
Such an additional information can be included as an option
within the HTTP message containing the resource, or it might
be included in a different message as well.

Upon reception of the alert from the origin serveros, the
edge serveresi gossips it to other edge servers, including other
alerts (if any) it received previously fromos or from other edge
servers. This allows edge servers to understand if more that
an edge server has received a false query string directed to the
same origin serveros. If so, then maybeos is under a random
query string DoS attack.

It is worth mentioning that the reception of an erroneous
query string does not implies that the origin server is under
attack. Such kinds of requests can be received for a variety of
reasons, including human errors and incorrect implementations
of external mashups that exploit some kind of Web resources
coming from the origin server. These external factors should
not affect the behavior of the origin server and false positive
detections must be avoided. Thus, the identification of a
possible attack should happen only after a “sufficient” number
of occurrences. Then, appropriate counter-measures can be

3

Algorithm 1 Gossip Protocol executed atei
function INITIALIZATION ()
v ← CHOOSEPROBABILITY ()

function GOSSIP(os)
msg= collect all suspected activities towardsos during∆
for all esj ∈ CDN \ {ei} do

if RANDOM() < v then
SEND(msg,esj)

end if
end for

main loop behavior
on reception of an alertor timeout idle status
os = select the origin server to control
GOSSIP(os)

employed such as, for instance, alerting (through a broadcast)
all edge servers, which from that moment will process only
HTTP requests without any appended query strings.

A central point of the approach is to quantify the “sufficient”
number of alerts to suspect that an origin server is under a
random query string DoS attack. Considering the percentage
of erroneous requests over the total number of requests on a
given time interval probably does not represent an appropriate
choice, since such metric would take into consideration the
popularity of the Web service hosted on the origin server.
Instead, we employ the following simple heuristics. Each
edge server collects all the alert messages coming from the
origin server or from the gossip protocol executed among
edge servers in the CDN. This number is divided by the
numberS of edge servers. When this value exceeds a given
threshold, then a random query string DoS attack is suspected.
Such a measure is an estimation of the number of erroneous
query string received per edge server during a time interval
∆. An erroneous query string is assumed to be a rare event;
hence a non-negligible value of these received requests, when
considered globally, for the whole CDN, may clearly indicate
a possible attack.

B. Gossip Algorithm

The gossip protocol is shown in Algorithm 1 [3]. It is a
very simple push dissemination scheme that exploits a constant
probability to spread information. The term “push” means that
nodes decide to send information to other ones via independent
and local decisions. Differently to pull based schemes, no
direct requests are performed by receivers. In substance, when
an alert must be propagated, the edge serveresi randomly
selects the receivers using a probability valuev ≤ 1. In
particular, each edge serveresj , i 6= j is gossiped based on
a probability determined byv . On average, the alert is thus
propagated fromesi to v(S − 1) edge servers, ifS is the
number of edge servers in the CDN.

A DoS attack is accomplished during a limited time interval,
since the goal is to overflow the origin server with a huge
number of requests that should waste all the origin server’s

resources and saturate its network bandwidth. This claims for
a rapid detection of a random query string DoS attack. For this
reason, each edge server sends gossip messages to others not
only after a reception of an alert from an origin server, but also
periodically. The origin serveros to consider is determined
based on the source of the received alert message (if any has
been received), or randomly chosen among those for which an
alert message has been received previously. Then,esi executes
the GOSSIP() procedure to disseminate information related to
os.

Another consequence, which is concerned with such a sud-
den spike in the requests to the origin server, is that the activity
of edge servers can be monitored taking into consideration
limited time intervals. For this reason, edge servers exchange
suspected activities monitored during a moving time window
∆. This reduces the amount of data to be managed, processed
and exchanged among edge servers. Gossip messages are thus
limited in size and the control procedure executed at edge
servers requires limited computational efforts.

IV. EXPERIMENTAL EVALUATION

In this section, we report on a simulation we performed to
assess whether the approach is able to detect random query
string DoS attacks, when varying the configuration of a CDN,
and to assess if the scheme is subject to false positives.

A. Simulator Details

We developed our own simulator to assess the proposed
scheme. It was a discrete-event simulator written in C code;
pseudo-random number generation was performed by employ-
ing the GNU Scientific Library [2]. The simulator allows to
test the behavior of a given amount of edge servers for a
settable number of time steps. The attacker is simulated as
a random process that sends random query strings to some
of the edge servers during the simulation. Such a query is
transformed into a resource request, and in turn into an alert
generated by the origin server to the edge server. The simulator
allows also to simulate non-malicious requests containing
erroneous query strings towards some edge servers. Also these
requests are generated by a random process (whose generation
probability can be varied).

The behavior of edge servers in the CDN was implemented
as detailed in the previous section. In particular, the simulator
allows to vary all the parameters related to the protocol, such
as the dissemination probabilityv for gossiping messages, the
threshold for suspecting that an origin server is under attack
and the size of the time window employed to consider the
aggregate of received alerts.

B. Metrics of Interest and Configuration

We performed a time-stepped simulation of durationT =
200 steps. We varied the size of the moving time window. We
varied the probability of generation of a novel random query
string request by the attacker to a given edge serverPattack

from 0.1 up to 1, while keeping the probability of a honest
erroneous query string at a constant lower value (when not
differently stated, its value is set equal to0.01).

4

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 10; Thr Detection = 0.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 25; Thr Detection = 0.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 50; Thr Detection = 0.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 75; Thr Detection = 0.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

Fig. 2. Average detection step and percentage of detection when varying the number of edge servers and the rate of generation of a random query string.

In the following charts we show outlines when the probabil-
ity of gossipPgossip among edge servers was set equal to0.5.
We varied such value up to0.9 obtaining very similar results.
Another varied parameter is the size of the time window
exploited to include alerts within gossip messages. We varied
such value from10 up to 100. Also in this case, we did
not noticed significant differences. In the following, we show
outcomes with a window size set equal to10 time steps (a
lower value might have some impact on results).

A delicate aspect related to the success of the attack is
concerned with the hardware configuration of the origin server,
its computational capacity and network bandwidth, as well as
the dimension of the resources requested by the edge servers
to the origin server. Due to the extreme variability of these
parameters, we decided to not exploit these metrics as those
which determine if the attack succeeded. Rather, we exploited
the already mentioned threshold to determine if the amount
of received alerts at a given edge server enables to detect
the attack. We varied the value set for such threshold from
0.25 up to 1.5. As discussed in the previous sections, we
assume that when the system is not under attack, an erroneous
query string is a rare event. The value compared against the
threshold is an estimation of alerts received on average by each
edge server during the considered time interval. Thus, given
the typical number of edge serversS in a CDN, the selected
values represent non-negligible thresholds that might indicate
an attack.

For each configuration setting, we run a corpus of 15
different simulations using different seed numbers. Results
shown in the charts are obtained as the average of outcomes
from the different simulation runs. The metrics we measured

are mainly the number of steps needed by edge servers to
detect that the origin server is under a random query string
DoS attack, and the percentage of detected attacks.

C. Results

Figure 2 shows the results of four different configuration
scenarios in which we varied the number of edge servers in the
CDN. In particular, the four charts refer to a configuration with
10, 25, 50, 75 edge servers. Each chart reports the average step
of detection after the beginning of the attack (red continuous
line, y-axis on the left) and the percentage of detected attacks
(green, dashed line, y-axis non the right). As shown in the
charts, the higherPattack (i.e. the stronger the attack to the
origin server), the lower the number of steps required for
detecting it and the higher the probability of detection.

It is clear that with an increased number of edge servers,
more steps of interaction among these nodes is required to
detect an attack. Moreover, in certain configurations the system
is not able to detect all the attacks, whenPattack has a low
value, as shown in the figure.

Figure 3 shows the average detection step and percentage
of detection obtained when the threshold employed to suspect
a random query string DoS attack was varied from0.25 to
1.5. In this cases, the number of edge servers was set equal to
75 and the probability of gossip among edge servers was0.5.
Charts show that, as expected, the tuning of this parameter
influences the outcomes of the distributed scheme. In fact, we
have very similar results when such parameter is kept below1;
above it, results change and it becomes more difficult to detect
an attack, mostly when a low probability of gossipPgossip is
employed among edge servers.

5

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 75; Thr Detection = 0.25; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 75; Thr Detection = 0.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 75; Thr Detection = 1; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
et

ec
tio

n
S

te
p

D
ec

te
ct

ed
 A

tta
ck

s
(%

)

Pattack

Edge Servers = 75; Thr Detection = 1.5; Pgossip = 0.5; Window = 10

Dectection Step
Prob Detection

Fig. 3. Average detection step and percentage of detection when varying the threshold to suspect a random query string DoS attack.

It is worth mentioning that when we simulate the system
not being under attack, but with possible generation of non-
malicious erroneous query string requests, the system does
not detect any DoS. In particular, we varied the rate of
generation of such erroneous requests using a probability of
a novel generation at each step, for each edge server, varying
from 0.01 up to 0.05, with Pattack=0 and varying all other
parameters as in the scenarios mentioned above. In this case,
the CDN would behave normally.

V. CONCLUSIONS

This paper presented a scheme that may be effectively
employed to mitigate random query string DoS attacks em-
ployed on CDNs. The idea is to exploit a gossip protocol
executed by edge servers to detect if some origin server is
under attack. The distributed scheme is simple and does not
require particular efforts for the coordination among edge
servers. Outcomes from simulations showed the viability of
the proposed approach.

Further investigation may be devoted to understand if these
kinds of DoS attacks can be led to cloud architectures,
since these novel technologies may exploit CDNs (or similar
solutions) to store and manage Web resources.

REFERENCES

[1] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Comparing dns
resolvers in the wild. InProceedings of the 10th annual conference on
Internet measurement, IMC ’10, pages 15–21, New York, NY, USA, 2010.
ACM.

[2] G. P. Contributors. GSL - GNU scientific library - GNU project - free
software foundation (FSF). http://www.gnu.org/software/gsl/ , 2010.

[3] G. D’Angelo and S. Ferretti. Simulation of scale-free networks. In
Simutools ’09: Proc. of the 2nd International Conference onSimulation
Tools and Techniques, pages 1–10, ICST, Brussels, Belgium, 2009. ICST.

[4] G. D’Angelo, S. Ferretti, and M. Marzolla. Adaptive event dissemina-
tion for peer-to-peer multiplayer online games. InProceedings of the
International Workshop on DIstributed SImulation and Online gaming
(DISIO 2011) - ICST Conference on Simulation Tools and Techniques
(SIMUTools 2011), pages 1–8, ICST, Brussels, Belgium, 2011. ICST.

[5] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann. Improving
content delivery using provider-aided distance information. In Proceed-
ings of the 10th annual conference on Internet measurement, IMC ’10,
pages 22–34, New York, NY, USA, 2010. ACM.

[6] D. Schneider. Network defense gone wrong.IEEE Spectrum, 48:11–12,
2011.

[7] S. Triukose, Z. Al-Qudah, and M. Rabinovich. Content delivery networks:
protection or threat? InProceedings of the 14th European conference
on Research in computer security, ESORICS’09, pages 371–389, Berlin,
Heidelberg, 2009. Springer-Verlag.

http://www.gnu.org/software/gsl/

	I Introduction
	II Random Query String DoS Attack
	III Coping with Random Query String DoS
	III-A Overview of the Approach
	III-B Gossip Algorithm

	IV Experimental Evaluation
	IV-A Simulator Details
	IV-B Metrics of Interest and Configuration
	IV-C Results

	V Conclusions
	References

