Abstract
In classifying malware, an open research question is how to combine similar extracted data from program analyzers in such a way that the advantages of the analyzers accrue and the errors are minimized. We propose an approach to fusing multiple program analysis outputs by abstracting the features to a common form and utilizing a disjoint union fusion function. The approach is evaluated in an experiment measuring classification accuracy on fused dynamic trace data on over 18,000 malware files. The results indicate that a naïve fusion approach can yield improvements over non-fused results, but the disjoint union fusion function outperforms naïve union by a statistically significant amount in three of four classification methods applied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, W.H., Ford, R.: How not to be seen II: The defenders fight back. IEEE Security & Privacy 5(6), 65–68 (2007)
Anubis: Analyzing unknown binaries (June 2011), http://anubis.iseclab.org
Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient detection of split personalities in malware. In: Network and Distributed System Security, NDSS (2010)
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)
Bayer, U., Kruegel, C.: TTAnalyze: A tool for analyzing malware. In: Proceedings of the 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual Conference (2006)
Boudjemaa, R., Forbes, A.: Parameter estimation methods for data fusion. NPL Report CMSC 38(04) (2004)
Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: Proceedings of the IEEE International Conference on Dependable Systems and Networks, Anchorage, AK, U.S.A., pp. 177–186 (2008)
Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software Protection. Addison-Wesley Professional (2009)
CWSandbox: behavior-based malware analysis (June 2011), http://mwanalysis.org
Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the IEEE 85(1), 6–23 (1997)
Islam, R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on string and function feature selection. In: Cybercrime and Trustworthy Computing, Workshop, pp. 9–17 (2010)
Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-resistant malware. In: Proceedings of the 1st ACM Workshop on Virtual Machine Security, pp. 11–22. ACM, Chicago (2009)
Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries. In: Proceedings of the 13th USENIX Security Symposium, pp. 255–270. Usenix (2004)
Laskov, P., Lippman, R.: Machine learning in adversarial environments. Machine Learning 81, 115–119 (2010)
Lu, Y., Din, S., Zheng, C., Gao, B.: Using multi-feature and classifier ensembles to improve malware detection. Journal of C.C.I.T. 39(2) (November 2010)
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T. (eds.) Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–940. ACM (2006)
Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction set for behavior-based analysis. Tech. Rep. TR-2009-07, University of Mannheim (2009)
Walenstein, A., Hefner, D., Wichers, J.: Header information in malware families and impact on automated classifiers. In: Proceedings of the 5th International Conference on Malicious and Unwanted Software, pp. 15–22. IEEE CSP (2010)
Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis using CWSandbox. IEEE Security & Privacy 5(2), 32–39 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
LeDoux, C., Walenstein, A., Lakhotia, A. (2012). Improved Malware Classification through Sensor Fusion Using Disjoint Union. In: Dua, S., Gangopadhyay, A., Thulasiraman, P., Straccia, U., Shepherd, M., Stein, B. (eds) Information Systems, Technology and Management. ICISTM 2012. Communications in Computer and Information Science, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29166-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-29166-1_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29165-4
Online ISBN: 978-3-642-29166-1
eBook Packages: Computer ScienceComputer Science (R0)