Abstract
The hypothesis in this paper is that a significant amount of intraday market data is either noise or redundant, and that if it is eliminated, then predictive models built using the remaining intraday data will be more accurate. To test this hypothesis, we use an evolutionary method (called Evolutionary Data Selection, EDS) to selectively remove out portions of training data that is to be made available to an intraday market predictor. After performing experiments in which data-selected and non-data-selected versions of the same predictive models are compared, it is shown that EDS is effective and does indeed boost predictor accuracy. It is also shown in the paper that building multiple models using EDS and placing them into an ensemble further increases performance. The datasets for evaluation are large intraday forex time series, specifically series from the EUR/USD, the USD/JPY and the EUR/JPY markets, and predictive models for two primary tasks per market are built: intraday return prediction and intraday volatility prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breedon, F., Ranaldo, A.: Intraday Patterns in FX Returns and Order Flow. Swiss National Bank Working Papers 2011-4 (2010)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Cano, J., Herrera, F., Lozano, M.: Using Evolutionary Algorithms as Instance Selection for Data Reduction in KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7(6), 561–575 (2003)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)
Larkin, F., Ryan, C.: Modesty Is the Best Policy: Automatic Discovery of Viable Forecasting Goals in Financial Data. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 202–211. Springer, Heidelberg (2010)
Luke, S.: Essentials of Metaheuristics, Lulu (2009), http://cs.gmu.edu/~sean/book/metaheuristics/
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning. MIT Press (1998)
Pi Trading Corporation, http://pitrading.com/
Sewell, M.: Characterization of Financial Time Series. Research Note RN/11/01, Dept. of Computer Science UCL (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mayo, M. (2012). Evolutionary Data Selection for Enhancing Models of Intraday Forex Time Series. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-29178-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29177-7
Online ISBN: 978-3-642-29178-4
eBook Packages: Computer ScienceComputer Science (R0)