Abstract
We discuss ongoing development of an evolutionary algorithm library to run on the cloud. We relate how we have used the Hadoop open-source MapReduce distributed data processing framework to implement a single “island” with a potentially very large population. The design generalizes beyond the current, one-off kind of MapReduce implementations. It is in preparation for the library becoming a modeling or optimization service in a service oriented architecture or a development tool for designing new evolutionary algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Web resource: ApacheHadoop, http://hadoop.apache.org/core
Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: MapReduce in the clouds for science. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, CloudCom (2010)
Web resource: MAHOUT, http://mahout.apache.org/
Jin, C., Vecchiola, C., Buyya, R.: MRPGA: An extension of MapReduce for parallelizing genetic algorithms. In: IEEE Fourth International Conference on eScience 2008, pp. 214–221. IEEE (2008)
Verma, A., Llora, X., Campbell, R., Goldberg, D.: Scaling genetic algorithms using MapReduce. Technical report, Illigal TR 2009007
Verma, A., Llora, X., Venkataraman, S., Goldberg, D., Campbell, R.: Scaling ECGA model building via data-intensive computing. In: 2010 IEEE Congress on Evolutionary Computation, CEC (2010)
Verma, A., Llora, X., Goldberg, D., Campbell, R.: Scaling genetic algorithms using MapReduce. In: Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009 (2009)
Wang, S., Gao, B.J., Wang, K., Lauw, H.W.: Parallel learning to rank for information retrieval. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, SIGIR 2011, pp. 1083–1084. ACM, New York (2011)
Huang, D.W., Lin, J.: Scaling populations of a genetic algorithm for job shop scheduling problems using MapReduce. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, CloudCom (2010)
Verma, A., Zea, N., Cho, B., Gupta, I., Campbell, R.: Breaking the MapReduce stage barrier. In: 2010 IEEE International Conference on Cluster Computing (CLUSTER), pp. 235–244. IEEE (2010)
Web resource: Amazon EC2, http://aws.amazon.com/ec2/
Vladislavleva, E., Smits, G., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation 13(2), 333–349 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fazenda, P., McDermott, J., O’Reilly, UM. (2012). A Library to Run Evolutionary Algorithms in the Cloud Using MapReduce. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-29178-4_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29177-7
Online ISBN: 978-3-642-29178-4
eBook Packages: Computer ScienceComputer Science (R0)