Abstract
With the recent rapid growth of social image hosting websites, it is becoming increasingly easy to construct a large database of tagged images. In this paper, we investigate whether and how social tags can be used for improving content-based image search results, which has not been well investigated in existing work. We propose a multi-modal relevance feedback scheme and a supervised re-ranking approach by using social tags. Our multi-modal scheme utilizes both image and social tag relevance feedback instances. The approach propagates visual and textual information and multi-modal relevance feedback information on an image-tag relationship graph with a mutual reinforcement process. We conduct experiments showing that our approach can successfully use social tags in the re-ranking of content-based social image search results and perform better than other approaches. Additional experiment shows that our multi-modal relevance feedback scheme significantly improves performance compared with the traditional single-modal scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In: CIKM, pp.193–202 (2008)
Jing, Y., Baluja, S.: VisualRank: Applying PageRank to Large-Scale Image Search. TPAMI 30(11), 1877–1890 (2008)
Park, G., Baek, Y., Lee, H.: Re-ranking algorithm using post-retrieval clustering for content-based image retrieval. Inf. Process. Manage. 41(2) (2005)
Porkaew, K., Mehrotra, S., Ortega, M.: Query reformulation for content based multimedia retrieval in MARS. In: ICMCS, pp. 747–751 (1999)
Porkaew, K., Chakrabarti, K., Mehrotra, S.: Query Refinement for Multimedia Similarity Retrieval in MARS. In: ACM Multimedia, pp. 235–238 (1999)
Yan, R., Hauptmann, A., Jin, R.: Multimedia search with pseudo-relevance feedback. In: CIVR 2003, pp. 238–247 (2003)
Liu, Y., Mei, T., Hua, X., Tang, J., Wu, X., Li, S.: Learning to video search rerank via pseudo preference feedback. In: ICME 2008, pp. 297–300 (2008)
Hsu, W., Kennedy, L., Chang, S.: Video Search Reranking via Information Bottleneck Principle. In: MM, pp. 35–44 (2006)
Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: ICIP, pp. 721–724 (2001)
Chen, Y., Zhou, X., Huang, T.: One-class SVM for learning in image retrieval. In: ICIP, pp. 34–37 (2001)
van de Sande, K., Gevers, T., Snoek, C.: Evaluating Color Descriptors for Object and Scene Recognition. TPAMI 32(9), 1582–1596 (2010)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW, pp. 327–336 (2008)
Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: A Real-World Web Image Database from National University of Singapore. In: CIVR (2009)
Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS) 20(4) (2001)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001) Software, http://www.csie.ntu.edu.tw/~cjlin/libsvm
Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, J., Ma, Q., Asano, Y., Yoshikawa, M. (2012). Re-ranking by Multi-modal Relevance Feedback for Content-Based Social Image Retrieval. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds) Web Technologies and Applications. APWeb 2012. Lecture Notes in Computer Science, vol 7235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29253-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-29253-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29252-1
Online ISBN: 978-3-642-29253-8
eBook Packages: Computer ScienceComputer Science (R0)