Skip to main content

Path Skyline for Moving Objects

  • Conference paper
Web Technologies and Applications (APWeb 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7235))

Included in the following conference series:

Abstract

Skyline query has been used mainly for relatively static and low dimensional data sets. We develop the Skyline query for the moving objects coping with dynamic changes efficiently. This study is focused on deriving a fundamental algorithm for extracting the path skylines so that the Shortest Path based algorithm, named PathSL, can generate an optimal skyline for moving objects. It turns out that PathSL is robust against changing the source and destination and generically scalable for the problem size with polynomial computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atallah, M.J., Qi, Y.: Computing All Skyline Probabilities for Uncertain Data. In: Proc. ACM PODS, pp. 279–787 (2009)

    Google Scholar 

  2. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proc. ICDE, pp. 421–430 (2001)

    Google Scholar 

  3. Cohen, S., Shiloach, M.: Flexible XML Querying Using Skyline Semantics. In: Proc. ICDE, pp. 553–564 (2009)

    Google Scholar 

  4. Dahl, O.J., Dijkstra, E.W.: Hoare Structured Programming. Academic Press, London (1972)

    Google Scholar 

  5. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm for Skyline Queries. In: Proc. SIGMOD, pp. 467–478 (2003)

    Google Scholar 

  6. Sacharidis, D., Arvanitis, A., Sellis, T.: Probabilistic Contextual Skylines. In: Proc. ICDE, pp. 273–284 (2010)

    Google Scholar 

  7. Kossmann, D., Ramsak, F., Rost, S.: Shooting Star in the Sky: An Online Algorithm for Skyline Queries. In: Proc. VLDB, pp. 275–286 (2002)

    Google Scholar 

  8. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable Network Distance Browsing in Spatial Databases. In: Proc. SIGMOD, pp. 43–54 (2008)

    Google Scholar 

  9. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths in Graphs. IEEE TSMC 4(2), 100–107 (1968)

    Google Scholar 

  10. Hsueh, Y., Zimmermann, R., Ku, W., Jin, Y.: SkyEngine: Efficient Skyline Search Engine for Continuous Skyline Computations. In: Proc. ICDE, pp. 1316–1319 (2011)

    Google Scholar 

  11. Köhler, H., Yang, J.: Computing Large Skylines over Few Dimensions: The Curse of Anti-Correlation. In: Proc. APWeb, pp. 284–290 (2010)

    Google Scholar 

  12. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous Clustering of Moving Objects. IEEE TKDE 19(9), 1161–1174 (2007)

    Google Scholar 

  13. Jin, W., Ester, M., Hu, Z., Han, J.: The Multi-Relational Skyline Operator. In: Proc. ICDE, pp. 1276–1280 (2007)

    Google Scholar 

  14. Lee, W., Leung, C.K., Lee, J.J.: Mobile Web Navigation in Digital Ecosystems Using Rooted Directed Trees. IEEE TIE 58(6), 2154–2162 (2011)

    Google Scholar 

  15. Lee, W., Song, J.J., Leung, C.K.-S.: Categorical Data Skyline Using Classification Tree. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011. LNCS, vol. 6612, pp. 181–187. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Lin, X., Zhang, Y., Zhang, W., Cheema, M.A.: Stochastic Skyline Operator. In: Proc. ICDE, pp. 721–732 (2011)

    Google Scholar 

  17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network Databases. In: Proc. VLDB, pp. 802–813 (2003)

    Google Scholar 

  18. Sharifzadeh, M., Shahabi, C., Kazemi, L.: Processing Spatial Skyline Queries in Both Vector Spaces and Spatial Network Databases. ACM TODS 34(3), 1–45 (2009)

    Article  Google Scholar 

  19. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: Proc. VLDB, pp. 301–310 (2001)

    Google Scholar 

  20. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-Based Representative Skyline. In: Proc. ICDE, pp. 892–903 (2009)

    Google Scholar 

  21. Tian, L., Wang, L., Zou, P., Jia, Y., Li, A.: Continuous Monitoring of Skyline Query over Highly Dynamic Moving Objects. In: Proc. MobiDE, pp. 59–66 (2007)

    Google Scholar 

  22. Yoon, S., Ye, W., Heidemann, J.S., Littlefield, B., Shahabi, C.: SWATS: Wireless Sensor Networks for Steamflood and Waterflood Pipeline Monitoring. IEEE Network 25(1), 50–56 (2011)

    Article  Google Scholar 

  23. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively Indexing Uncertain Moving Objects for Predictive Queries. In: Proc. PVLDB, vol. 2(1), pp. 1198–1209 (2009)

    Google Scholar 

  24. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable Skyline Computation Using Object-Based Space Partitioning. In: Proc. SIGMOD, pp. 483–494 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, W., Eom, C.SH., Jo, TC. (2012). Path Skyline for Moving Objects. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds) Web Technologies and Applications. APWeb 2012. Lecture Notes in Computer Science, vol 7235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29253-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29253-8_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29252-1

  • Online ISBN: 978-3-642-29253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics