Skip to main content

Computing Minimum Geodetic Sets of Proper Interval Graphs

  • Conference paper
LATIN 2012: Theoretical Informatics (LATIN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Included in the following conference series:

  • 1024 Accesses

Abstract

We show that the geodetic number of proper interval graphs can be computed in polynomial time. This problem is \(\mbox{\rm NP}\)-hard on chordal graphs and on bipartite weakly chordal graphs. Only an upper bound on the geodetic number of proper interval graphs has been known prior to our result.

This work is supported by the Research Council of Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Information Processing Letters 19, 37–40 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  3. Buckley, F., Harary, F.: Geodetic games for graphs. Questiones Mathematicae 8, 321–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55, 99–104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dewdney, A.K.: Fast Turing reductions between problems in NP. Technical Report 71, Department of Computer Science, University of Western Ontario (1981)

    Google Scholar 

  6. Dourado, M.C., Gimbel, J.G., Kratochvíl, J., Protti, F., Szwarcfiter, J.L.: On the computation of the hull number of a graph. Discrete Mathematics 309, 5668–5674 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Mathematics 310, 832–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM Journal on Algebraic and Discrete Methods 7, 433–442 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerstel, O., Zaks, S.: A new characterization of tree medians with applications to distributed sorting. Networks 24, 23–29 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. Elsevier (2004)

    Google Scholar 

  11. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Mathematical Computation Modelling 17, 89–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haynes, T.W., Henning, M.A., Tiller, C.: Geodetic achievement and avoidance games for graphs. Quaestiones Mathematicae 26, 389–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernandoa, C., Jiang, T., Mora, M., Pelayo, I.M., Seara, C.: On the Steiner, geodetic and hull numbers of graphs. Discrete Mathematics 293, 139–154 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kang, A.N.C., Ault, D.A.: Some properties of a centroid of a free tree. Information Processing Letters 4, 18–20 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Computers & Mathematics with Applications 25, 15–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitchell, S.L.: Another characterization of the centroid of a tree. Discrete Mathematics 24, 277–280 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Necásková, M.: A note on the achievement geodetic games. Quaestiones Mathematicae 12, 115–119 (1988)

    Article  MathSciNet  Google Scholar 

  18. Pandu Rangan, C., Parthasarathy, K.R., Prakash, V.: On the g-centroidal problem in special classes of perfect graphs. Ars Combinatoria 50, 267–278 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Prakash, V.: An Efficient g-centroid Location Algorithm for Cographs. International Journal of Mathematics and Mathematical Sciences 9, 1405–1413 (2005)

    Article  MathSciNet  Google Scholar 

  20. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press (1969)

    Google Scholar 

  21. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete Applied Mathematics 18, 279–292 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Veeraraghavan, P.: Application of g-convexity in mobile ad hoc networks. In: Proceedings of CITA 2009, pp. 33–38 (2009)

    Google Scholar 

  23. Wang, F.H., Wang, Y.L., Chang, J.M.: The lower and upper forcing geodetic numbers of block-cactus graphs. European Journal of Operational Research 175, 238–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D. (2012). Computing Minimum Geodetic Sets of Proper Interval Graphs. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics