Abstract
In this work we study a simplified model of a neural activity flow in networks, whose connectivity is based on geometrical embedding, rather than being lattices or fully connected graphs. We present numerical results showing that as the spectrum (set of eigenvalues of adjacency matrix) of the resulting activity-based network develops a scale-free dependency. Moreover it strengthens and becomes valid for a wider segment along with the simulation progress, which implies a highly organised structure of the analysed graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A Learning Algorithm for Boltzmann Machines. Cognitive Science 9(1), 147–169 (1985)
Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (January 2002)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews, Neuroscience 10 (March 2009)
Chung, F., Lu, L.: Complex graphs and networks. American Mathematical Society (2006)
Chialvo, D.: Critical brain networks. Physica A: Statistical Mechanics and its Applications 340(4) (September 2004)
Cvetković, D., Rowlingson, P., Simić, S.: Eigenspaces of graphs. Cambridge University Press (1997)
Eguiluz, V., Chialvo, D., Cecchi, G., Baliki, M., Apkarian, V.: Scale-Free Brain Functional Networks, Physical Review Letters, PRL 94 018102 (January 2005)
Erdős, P., Réyni, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
Piekniewski, F.: Spectra of the Spike Flow Graphs of Recurrent Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 603–612. Springer, Heidelberg (2009)
Piersa, J., Piekniewski, F., Schreiber, T.: Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks. IEEE Transactions on Neural Networks 21(11) (November 2010)
Piersa, J.: Diameter of the spike-flow graphs of geometrical neural networks. In: 9th International Conference on Parallel Processing and Applied Mathematics (September 2011) (in print)
Schreiber, T.: Spectra of winner-take-all stochastic neural networks, 3193(0810), pp. 1–21 (October 2008), arXiv http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Piersa, J., Schreiber, T. (2012). Spectra of the Spike-Flow Graphs in Geometrically Embedded Neural Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-29347-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29346-7
Online ISBN: 978-3-642-29347-4
eBook Packages: Computer ScienceComputer Science (R0)