Skip to main content

Spectra of the Spike-Flow Graphs in Geometrically Embedded Neural Networks

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2256 Accesses

Abstract

In this work we study a simplified model of a neural activity flow in networks, whose connectivity is based on geometrical embedding, rather than being lattices or fully connected graphs. We present numerical results showing that as the spectrum (set of eigenvalues of adjacency matrix) of the resulting activity-based network develops a scale-free dependency. Moreover it strengthens and becomes valid for a wider segment along with the simulation progress, which implies a highly organised structure of the analysed graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A Learning Algorithm for Boltzmann Machines. Cognitive Science 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (January 2002)

    Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews, Neuroscience 10 (March 2009)

    Google Scholar 

  4. Chung, F., Lu, L.: Complex graphs and networks. American Mathematical Society (2006)

    Google Scholar 

  5. Chialvo, D.: Critical brain networks. Physica A: Statistical Mechanics and its Applications 340(4) (September 2004)

    Google Scholar 

  6. Cvetković, D., Rowlingson, P., Simić, S.: Eigenspaces of graphs. Cambridge University Press (1997)

    Google Scholar 

  7. Eguiluz, V., Chialvo, D., Cecchi, G., Baliki, M., Apkarian, V.: Scale-Free Brain Functional Networks, Physical Review Letters, PRL 94 018102 (January 2005)

    Google Scholar 

  8. Erdős, P., Réyni, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  9. Piekniewski, F.: Spectra of the Spike Flow Graphs of Recurrent Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 603–612. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Piersa, J., Piekniewski, F., Schreiber, T.: Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks. IEEE Transactions on Neural Networks 21(11) (November 2010)

    Google Scholar 

  11. Piersa, J.: Diameter of the spike-flow graphs of geometrical neural networks. In: 9th International Conference on Parallel Processing and Applied Mathematics (September 2011) (in print)

    Google Scholar 

  12. Schreiber, T.: Spectra of winner-take-all stochastic neural networks, 3193(0810), pp. 1–21 (October 2008), arXiv http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piersa, J., Schreiber, T. (2012). Spectra of the Spike-Flow Graphs in Geometrically Embedded Neural Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics