Skip to main content

Fuzzy Epoch-Incremental Reinforcement Learning Algorithm

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2260 Accesses

Abstract

The new epoch-incremental reinforcement learning algorithm with fuzzy approximation of action-value function is developed. This algorithm is practically tested in the control of the mobile robot which realizes goal seeking behavior. The obtained results are compared with results of fuzzy version of reinforcement learning algorithms, such as Q(0)-learning, Q(λ)-learning, Dyna-learning and prioritized sweeping. The adaptation of the fuzzy approximator to the model based reinforcement learning algorithms is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appl, M., Brauer, W.: Fuzzy Mode-Based Reinforcement Learning. In: Proc. of the European Symposium on Intelligent Techniques, pp. 212–218 (2000)

    Google Scholar 

  2. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve difficult learning problem. IEEE Trans. SMC 13, 834–847 (1983)

    Google Scholar 

  3. Berenji, H.R.: Fuzzy Reinforcement Learning and Dynamic Programming. In: L. Ralescu, A. (ed.) IJCAI-WS 1993. LNCS, vol. 847, pp. 1–9. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Bonarini, A., Lazaric, A., Montrone, F., Restelli, M.: Reinforcement distribution in Fuzzy Q-learning. Fuzzy Sets and Systems 160, 1420–1443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, C., Er, M.J.: Real-Time Dynamic Fuzzy Q-Learning abd Control of Mobile Robots. In: Proc. of 5th Asian Control Conference, vol. 3, pp. 1568–1576 (2004)

    Google Scholar 

  6. Lambercy, F., Caprari, G.: Khepera III manual ver. 2.2, K-Team (2008)

    Google Scholar 

  7. Moore, A., Atkeson, C.: Prioritized sweeping: Reinforcement learning with less data and less time. Machine Learning 13, 103–130 (1993)

    Google Scholar 

  8. Peng, J., Williams, R.: Efficient learning and planning within the Dyna framework. In: Proc. of the 2nd International Conference on Simulation of Adaptive Behavior, pp. 281–290 (1993)

    Google Scholar 

  9. Rummery, G., Niranjan, M.: On line q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department (1994)

    Google Scholar 

  10. Sutton, R.: Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. In: Proc. of Seventh Int. Conf. on Machine Learning, pp. 216–224 (1990)

    Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Wiktorowicz, K., Zajdel, R.: A Fuzzy Navigation of a Mobile Robot. Systems Science 23(4), 87–100 (1997)

    MATH  Google Scholar 

  13. Watkins, C.J.C.H.: Learning from delayed Rewards. PhD thesis, Cambridge University, Cambridge, England (1989)

    Google Scholar 

  14. Zajdel, R.: Epoch-Incremental Queue-Dyna Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1160–1170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Zajdel, R.: Fuzzy Q(λ)-Learning Algorithm. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 256–263. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zajdel, R. (2012). Fuzzy Epoch-Incremental Reinforcement Learning Algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics