Abstract
In a recently published work the author investigates indiscernibility relations on information systems with a partially ordered universe. Specifically, he introduces a notion of compatibility between the (partially ordered) universe and an indiscernibility relation on its support, and establishes a criterion for compatibility. In this paper we make a first step in the direction of investigating the structure of all the indiscernibility relations which satisfy such a compatibility criterion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Codara, P.: A theory of partitions of partially ordered sets. PhD thesis, Università degli Studi di Milano, Italy (2008)
Codara, P.: Partitions of a Finite Partially Ordered Set. In: Damiani, E., D’Antona, O., Marra, V., Palombi, F. (eds.) From Combinatorics to Philosophy. The Legacy of G.-C. Rota, pp. 45–59. Springer, US (2009)
Codara, P.: Indiscernibility Relations on Partially Ordered Sets. In: IEEE International Conference on Granular Computing, GrC 2011, pp. 150–155 (2011)
Codara, P., D’Antona, O.M., Marra, V.: Open Partitions and Probability Assignments in Gödel Logic. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 911–922. Springer, Heidelberg (2009)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)
Jelonek, J., Krawiec, K., Slowinski, R.: Rough set reduction of attributes and their domains for neural networks. Computational Intelligence 11, 339–347 (1995)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inform. Sci. 112(1-4), 39–49 (1998)
Liu, G., Zhu, W.: The algebraic structures of generalized rough set theory. Inform. Sci. 178(21), 4105–4113 (2008)
Mac Lane, S.: Categories for the working mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)
Orłowska, E. (ed.): Incomplete information: rough set analysis. STUDFUZZ, vol. 13. Physica-Verlag, Heidelberg (1998)
Pagliani, P., Chakraborty, M.: A geometry of approximation. Trends in Logic—Studia Logica Library, vol. 27. Springer, New York (2008)
Pawlak, Z.: Rough sets. Internat. J. Comput. Inform. Sci. 11(5), 341–356 (1982)
Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 48–57 (1995)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Yao, Y.Y.: Information granulation and rough set approximation. Int. J. Intell. Syst. 16(1), 87–104 (2001)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Codara, P. (2012). On the Structure of Indiscernibility Relations Compatible with a Partially Ordered Set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-29350-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29349-8
Online ISBN: 978-3-642-29350-4
eBook Packages: Computer ScienceComputer Science (R0)