Skip to main content

Fractal Modelling of Various Wind Characteristics for Application in a Cybernetic Model of a Wind Turbine

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7268))

Included in the following conference series:

Abstract

The Weierstrass functions family, which graphs are fractal sets, in combination with medium-term trends, is used as the basis of the model of wind. Various aspects of wind variability, neglected in models proposed so far, are taken into considerations. A genetic algorithm is used in order to fit the proper parameters of Weierstrass function. Fractal dimension is utilized as a parameter in a fitness function. The results have shown that the proposed approach yielded very good fit for the observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barszcz, T., Randall, R.: Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing 23, 1352–1365 (2009)

    Article  Google Scholar 

  2. Barszcz, T., Jabłoński, A.: A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram. Mechanical Systems and Signal Processing 25, 431–451 (2011)

    Article  Google Scholar 

  3. Bąk, M., Bielecki, A.: Neural Systems for Short-Term Forecasting of Electric Power Load. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 133–142. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.S.: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Transactions on Energy Conversion 19, 352–361 (2004)

    Article  Google Scholar 

  5. Fan, S., Liao, J.R., Yokoyama, R., Chen, R., Lee, W.J.: Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Transactions on Energy Conversion 24, 474–482 (2009)

    Article  Google Scholar 

  6. Focken, U., Lange, M., Mönnich, K., Waldl, H.P., Beyer, H.G., Luig, A.: Short-term prediction of the aggregated power output of wind farms - a statistical analysis of the reduction of the prediction error by spatial smoothing effects. Journal of Wind Engineering and Industrial Aerodynamics 90, 231–246 (2002)

    Article  Google Scholar 

  7. Herman, A., Kaiser, R., Niemeyer, H.D.: Wind-wave variability in a shallow tidal sea - spectral modelling combined with neural networks method. Coastal Engineering 56, 759–772 (2009)

    Article  Google Scholar 

  8. Huang, Z., Chalabi, Z.S.: Use of time-series analysis to model and forecast wind speed. Journal of Wind Engineering and Industrial Aerodynamics 56, 311–322 (1995)

    Article  Google Scholar 

  9. Karczewski, J., Pawlak, M.: Reconfigurable control system of condensation power turbine. Problemy Eksploatacji 60, 15–26 (2006) (in polish)

    Google Scholar 

  10. Kusiak, A., Song, Z., Zhang, H.: Anticipatory control of wind turbines with data-driven predictive models. IEEE Transactions on Energy Conversion 24, 766–774 (2009)

    Article  Google Scholar 

  11. Kusiak, A., Zhang, H., Song, Z.: Short-term prediction of wind farm power: a data mining approach. IEEE Transactions on Energy Conversion 24, 125–136 (2009)

    Article  Google Scholar 

  12. Landberg, L.: Short-term prediction of the power production from wind farms. Journal of Wind Engineering and Industrial Aerodynamics 80, 207–220 (1999)

    Article  Google Scholar 

  13. Laudyn, D., Pawlik, M., Strzelczyk, F.: Power Plants, WNT, Warsaw (2000) (in polish)

    Google Scholar 

  14. Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renewable Energy 29, 939–947 (2004)

    Article  Google Scholar 

  15. Monfared, M., Nikravesh, S.K.Y., Rastegar, H.: A novel fuzzy predictor for wind speed. In: Proceedings of the World Congress on Engineering and Computer Science, WCECS 2007, pp. 840–843 (2007)

    Google Scholar 

  16. Richardson, L.F.: Atmospheric difusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London, Series A 110, 730–737 (1926)

    Google Scholar 

  17. Rykaluk, K.: Fracture in Metal Structures, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław (2000) (in polish)

    Google Scholar 

  18. Sreelakshmi, K., Ramakanthkumar, P.: Performance evaluation of short term wind speed prediction techniques. International Journal of Computer Science and Network Security 8, 162–169 (2008)

    Google Scholar 

  19. Sreelakshmi, K., Ramakanthkumar, P.: Neural networks for short term wind speed prediction. World Academy of Science, Engineering and Technology 42, 721–725 (2008)

    Google Scholar 

  20. Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal Fatigue in Engineering. Wiley & Sons, New York (2001)

    Google Scholar 

  21. Taylor, J.W., McSharry, P.E., Buizza, R.: Wind power density forecasting using ensemble predictions and time series models. IEEE Transactions on Energy Conversion 24, 775–782 (2009)

    Article  Google Scholar 

  22. Weron, A., Weron, R.: Stock Market of Energy. CIRE, Wrocław (2000) (in polish)

    Google Scholar 

  23. Weron, R.: Energy price risk management. Physica A: Statistical Mechanics and Its Application 285, 127–134 (2000)

    Article  MATH  Google Scholar 

  24. Wen, J., Zheng, Y., Donghan, F.: A review on reliability assessment for wind power. Renewable and Sustainable Energy Reviews 13, 2485–2494 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bielecka, M., Barszcz, T., Bielecki, A., Wójcik, M. (2012). Fractal Modelling of Various Wind Characteristics for Application in a Cybernetic Model of a Wind Turbine. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29350-4_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29349-8

  • Online ISBN: 978-3-642-29350-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics