Skip to main content

Evolutionary Optimization of Decomposition Strategies for Logical Functions

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

This paper presents a method of searching for the best decomposition strategy for logical functions. The strategy is represented by a decision tree, where each node corresponds to a single decomposition step. In that way the multistage decomposition of complex logical functions may be specified. The tree evolves using the developmental genetic programming. The goal of the evolution is to find a decomposition strategy for which the cost of FPGA implementation of a given function is minimal. Experimental results show that our approach gives significantly better outcomes than other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://rawski.zpt.tele.pw.edu.pl/pl/node/161

  2. http://www.eecs.berkeley.edu/~alanmi/abc

  3. Brzozowski, J., Łuba, T.: Decomposition of Boolean Functions Specified by Cubes. Journal of Multiple-Valued Logic and Soft Computing 9, 377–417 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Deniziak, S., Wieczorek, K.: Parallel Approach to the Functional Decomposition of Logical Functions using Developmental Genetic Programming. In: Proc. of 9th International Conference on Parallel Processing and Applied Mathematics. LNCS, Springer, Heidelberg (2011) (to appear)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  6. Keller, R., Banzhaf, W.: The Evolution of Genetic Code in Genetic Programming. In: Proc. of the Genetic and Evolutionary Computation Conference, pp. 1077–1082 (1999)

    Google Scholar 

  7. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Koza, J., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publisher, Norwell (2003)

    MATH  Google Scholar 

  9. Łuba, T., Nowicka, M., Rawski, M.: FPGA-based Decomposition of Boolean Functions. Algorithms and Implementation. In: Proc. of the 6th International Conference on Advanced Computer Systems (1999)

    Google Scholar 

  10. Morawiecki, P., Rawski, M., Selvaraj, H.: Input Variable Partitioning Method for Functional Decomposition of Functions Specified by Large Truth Tables. In: Proc. of International Conference on Computational Intelligence and Multimedia Applications, pp. 164–168 (2007)

    Google Scholar 

  11. Muthukumar, V., Bignall, R.J., Selvaraj, H.: An Efficient Variable Partitioning Approach for Functional Decomposition of Circuits. Journal of Systems Architecture 53, 53–67 (2007)

    Article  Google Scholar 

  12. Rawski, M.: Efficient Variable Partitioning Method for Functional Decomposition. Electronics and Telecommunications Quarterly 53(1), 63–81 (2007)

    Google Scholar 

  13. Rawski, M., Jóźwiak, L., Łuba, T.: Functional Decomposition with an Efficient Input Support Selection for Sub-functions Based on Information Relationship Measures. Journal of Systems Architecture 47(2), 137–155 (2001)

    Article  Google Scholar 

  14. Scholl, C.: Functional Decomposition with Application to FPGA Synthesis. Kluwer Academic Publishers, Norwell (2001)

    MATH  Google Scholar 

  15. Yang, S.: Logic Synthesis and Optimization Benchmarks. version 3.0. Tech. rep., Microelectronics Center of North Carolina (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deniziak, S., Wieczorek, K. (2012). Evolutionary Optimization of Decomposition Strategies for Logical Functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics