Skip to main content

Application of the Ant Colony Optimization Algorithm for Reconstruction of the Thermal Conductivity Coefficient

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

In this paper the parametric inverse heat conduction problem with the third kind boundary condition is solved by applying the Ant Colony Optimization algorithm introduced in recent years and belonging to the group of optimization algorithms inspired by the behavior of swarms of individuals living in real word. In this case the applied algorithm is based on the technique of searching for the shortest way connecting the ant-hill with the source of food and is used for minimizing the functional playing a crucial role in the proposed procedure prepared for reconstruction of the thermal conductivity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Proceed. NATO Advanced Workshop on Robots and Biological Syst., Tuscany (1989)

    Google Scholar 

  2. Eberhart, R.C, Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  3. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan (1992)

    Google Scholar 

  4. Dorigo, M., Stützle, T.: Ant Colony Optimization. Massachusetts Institute of Technology Press, Cambridge (2004)

    Google Scholar 

  5. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperatin gagents. IEEE Transactionson Systems, Man and Cybernetics – Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  6. Maniezzo, V., Colorni, A., Dorigo, M.: The ant system applied to the quadratic assignment problem. Technical Report IRIDIA, Universite Libre de Bruxelles, 94–128 (1994)

    Google Scholar 

  7. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load balancing in telecommunications networks. Adaptive Behavior 5(2), 169–207 (1996)

    Article  Google Scholar 

  8. Beck, J.V., Blackwell, B., Clair, C.R.: Inverse Heat Conduction: Ill Posed Problems. Wiley Intersc., New York (1985)

    MATH  Google Scholar 

  9. Beck, J.V., Blackwell, B.: Inverse Problems. In: Handbook of Numerical Heat Transfer. Wiley Intersc., New York (1988)

    Google Scholar 

  10. Haji-Sheikh, A., Buckingham, F.P.: Multidimensional inverse heat conduction using the Monte Carlo method. Trans. of ASME. Journal of Heat Transfer 115, 26–33 (1993)

    Article  Google Scholar 

  11. Beck, J.V., Cole, K.D., Haji-Sheikh, A., Litkouhi, B.: Heat Conduction Using Green’s Functions. Hempisphere, Publishing Corporation, Philadelphia (1992)

    Google Scholar 

  12. Mourio, D.A.: The Mollification Method and the Numerical Solution of Ill-posed Problems. John Wiley and Sons Inc., New York (1993)

    Google Scholar 

  13. Qiu, C.Y., Fu, C.L., Zhu, Y.B.: Wavelets and regularization of the sideways heat equation. Computers and Mathematics with Applications 46, 821–829 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Słota, D.: Solving the inverse Stefan design problem using genetic algorithm. Inverse Problems in Science and Engineering 16, 829–846 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Słota, D.: Restoring boundary conditions in the solidification of pure metals. Computers and Structures 89, 48–54 (2011)

    Article  Google Scholar 

  16. Hetmaniok, E., Zielonka, A.: Solving the inverse heat conduction problem by using the ant colony optimization algorithm. In: Kuczma, M., Wilmański, K., Szajna, W. (eds.) 18th International Conference on Computer Methods in Mechanics, CMM 2009, pp. 205–206. University of Zielona Góra Press (2009)

    Google Scholar 

  17. Hetmaniok, E., Słota, D., Zielonka, A.: Solution of the Inverse Heat Conduction Problem by Using the ABC Algorithm. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 659–668. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ardakani, M.D., Khodadad, M.: Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm. Inverse Problems in Science and Engineering 17(7), 855–870 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Majchrzak, E., Dziewoński, M., Jasiński, M.: Identification of Thermal Conductivity by Means of The Gradient Method and The BEM. Scientific Research of the Institute of Methematics and Computer Science 6, 147–158 (2007)

    Google Scholar 

  20. Telejko, T., Malinowski, Z.: Application of an inverse solution to the thermal conductivity identification using the finite element method. Journal of Materials Processing Technology 146(2), 145–155 (2004)

    Article  Google Scholar 

  21. Grzymkowski, R., Słota, D.: Numerical calculations of the heat-transfer coefficient during solidification of alloys. In: Sarler, B., Brebbia, C.A. (eds.) Moving boundaries VI. Computational Modelling of Free and Moving Boundary Problems, pp. 41–50. WIT Press, Southampton (2001)

    Google Scholar 

  22. Ryfa, A., Białecki, A.: The heat transfer coefficient spatial distribution reconstruction by an inverse technique. Inverse Problems in Science and Engineering 19, 117–126 (2011)

    Article  MATH  Google Scholar 

  23. Zielonka, A., Hetmaniok, E., Słota, D.: Using the Artificial Bee Colony Algorithm for Determining the Heat Transfer Coefficient. In: Czachórski, T., et al. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 369–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hetmaniok, E., SÅ‚ota, D., Zielonka, A. (2012). Application of the Ant Colony Optimization Algorithm for Reconstruction of the Thermal Conductivity Coefficient. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics