Skip to main content

Diffie-Hellman without Difficulty

  • Conference paper
Formal Aspects of Security and Trust (FAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7140))

Included in the following conference series:

Abstract

An excellent way for a protocol to obtain shared keys is Diffie-Hellman. For the automated verification of security protocols, the use of Diffie-Hellman poses a certain amount of difficulty, because it requires algebraic reasoning. Several tools work in the free algebra and even for tools that do support Diffie-Hellman, the algebraic reasoning becomes a bottleneck.

We provide a new relative-soundness result: for a large class of protocols, significantly restricting the abilities of the intruder is without loss of attacks. We also show the soundness of a very restrictive encoding of Diffie-Hellman proposed by Millen and how to obtain a problem that can be answered in the free algebra without increasing its size upon encoding. This enables the efficient use of free-algebra verification tools for Diffie-Hellman based protocols and significantly reduces search-spaces for tools that do support algebraic reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic protocols. IEEE Trans. Software Eng. 22(1), 6–15 (1996)

    Article  Google Scholar 

  2. Arapinis, M., Duflot, M.: Bounding Messages for Free in Security Protocols. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Armando, A., Compagna, L.: SAT-based Model-Checking for Security Protocols Analysis. Int. J. of Information Security 6(1), 3–32 (2007)

    Google Scholar 

  4. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005)

    Article  Google Scholar 

  5. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96. IEEE Computer Society, Cape Breton (2001)

    Google Scholar 

  6. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the Security of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 124–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Cremers, C.J.F.: The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Denker, G., Millen, J.: CAPSL and CIL Language Design. Technical Report SRI-CSL-99-02, SRI (1999)

    Google Scholar 

  9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2007)

    Google Scholar 

  11. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE), IETF, RFC 2409 (1998)

    Google Scholar 

  12. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security protocols. Journal of Computer Security 11(2), 217–244 (2003)

    Google Scholar 

  13. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-Hellman exponentiation. In: CSF, pp. 157–171 (2009)

    Google Scholar 

  14. Lynch, C., Meadows, C.: Sound Approximations to Diffie-Hellman using Rewrite Rules. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 262–277. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Lynch, C., Meadows, C.: On the relative soundness of the free algebra model for public key encryption. Electr. Notes Theor. Comput. Sci. 125(1), 43–54 (2005)

    Article  Google Scholar 

  16. Malladi, S.: Protocol indepedence through disjoint encryption under exclusive-or. In: Proc. Workshop of Foundation of Computer Security and Privacy (FCS-PrivMod) (March 2010)

    Google Scholar 

  17. Millen, J., Muller, F.: Cryptographic Protocol Generation From CAPSL. Technical Report SRI-CSL-01-07, SRI (2001)

    Google Scholar 

  18. Millen, J.K.: On the freedom of decryption. Inf. Process. Lett. 86(6), 329–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: ACM Conference on Computer and Communications Security, pp. 166–175 (2001)

    Google Scholar 

  20. Mödersheim, S.: Diffie-Hellman without difficulty (extended version). Technical Report IMM-TR-2011-13, DTU Informatics (2011), imm.dtu.dk/~samo

  21. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions, composed keys is NP-complete. Theor. Comput. Sci. 1-3(299), 451–475 (2003)

    Article  MathSciNet  Google Scholar 

  22. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mödersheim, S. (2012). Diffie-Hellman without Difficulty. In: Barthe, G., Datta, A., Etalle, S. (eds) Formal Aspects of Security and Trust. FAST 2011. Lecture Notes in Computer Science, vol 7140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29420-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29420-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29419-8

  • Online ISBN: 978-3-642-29420-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics