Skip to main content

Using Belief Function Theory to Deal with Uncertainties and Imprecisions in Image Processing

  • Conference paper
Belief Functions: Theory and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 164))

  • 1212 Accesses

Abstract

In imaging, physical phenomena and acquisition system often induce an alteration of the information. It results in the presence of noise and partial volume effect corresponding respectively to uncertainties and imprecisions. To cope with these different imperfections, we propose a method based on information fusion using Belief function theory. First, it takes advantage of neighborhood information and combination rules on mono-modal images in order to reduce uncertainties due to noise while considering imprecisions due to partial volume effect on disjunctions. Imprecisions are then reduced using information coming from multi-modal images. Results obtained on simulated images using various signal to noise ratio and medical images show its ability to segment multi-modal images having both noise and partial volume effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 225–339 (1967)

    Article  MathSciNet  Google Scholar 

  2. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  3. Smets, P., Kennes, R.: The Transferable Belief Model. Artif. Intell. 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capelle, A.S., Colot, O., Fernandez-Maloigne, C.: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information. Inf. Fusion 5(3), 203–216 (2004)

    Article  Google Scholar 

  5. Zhang, P., Gardin, I., Vannoorenberghe, P.: Information fusion using evidence theory for segmentation of medical images. In: Int. Colloq. on Inf. Fusion, vol. 1, pp. 265–272 (2007)

    Google Scholar 

  6. Bloch, I.: Defining belief functions using mathematical morphology - Application to image fusion under imprecision. Int. J of Approx. Reason. 48(2), 437–465 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  8. Gould, M.K., Kuschner, W.G., Rydzak, C.E., et al.: Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann. Int. Med. 139, 879–892 (2003)

    Google Scholar 

  9. Xu, B., Guan, Z., Liu, C., et al.: Can multimodality imaging using 18F-FDG/18F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions? Eur. J. Nucl. Med. Mol. Imaging 38(2), 285–292 (2011)

    Article  Google Scholar 

  10. Choi, W., Lee, S.W., Park, S.H., et al.: Planning study for available dose of hypoxic tumor volume using fluorine-18-labeled fluoromisonidazole positron emission tomography for treatment of the head and neck cancer. Radiother. Oncol. 97(2), 176–182 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Lelandais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S. (2012). Using Belief Function Theory to Deal with Uncertainties and Imprecisions in Image Processing. In: Denoeux, T., Masson, MH. (eds) Belief Functions: Theory and Applications. Advances in Intelligent and Soft Computing, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29461-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29461-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29460-0

  • Online ISBN: 978-3-642-29461-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics