Skip to main content

Classification Trees Based on Belief Functions

  • Conference paper
Belief Functions: Theory and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 164))

  • 1197 Accesses

Abstract

Decision tree classifiers are popular classification methods. In this paper, we extend to multi-class problems a decision tree method based on belief functions previously described for two-class problems only. We propose three possible extensions: combining multiple two-class trees together and directly extending the estimation of belief functions within the tree to the multi-class setting. We provide experiment results and compare them to usual decision trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abellan, J., Moral, S.: Upper entropy of credal sets. Applications to credal classification. International Journal of Approximate Reasoning 39(2-3), 235–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Breiman, Friedman, Olshen, Stone: Classification And Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  3. Ciampi, A.: Growing a tree classifier with imprecise data. Pattern Recognition Letters 21(9), 787–803 (2000)

    Article  Google Scholar 

  4. de Campos, L., Huete, J., Moral, S.: Probability intervals: a tool for uncertain reasoning. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 1, 167–196 (1994)

    Google Scholar 

  5. Dempster, A.P.: New methods for reasoning towards posterior distributions based on sample data. Annals of Mathematical Statistics 37, 355–374 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denoeux, T.: Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning 42(3), 228–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Denoeux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans. on Know. and Data Eng. (2011) (to appear), doi:10.1109/TKDE.2011.201

    Google Scholar 

  8. Denœux, T., Bjanger, M.S.: Induction of decision trees from partially classified data using belief functions. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 2923–2928. IEEE (2000)

    Google Scholar 

  9. Elouedi, Z., Mellouli, K., Smets, P.: Belief decision trees: theoretical foundations. International Journal of Approximate Reasoning 28(2-3), 91–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klir, G.J.: Uncertainty and information: foundations of generalized information theory. Wiley-IEEE Press (2006)

    Google Scholar 

  11. Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  12. Quost, B., Denœux, T.: Pairwise Classifier Combination using Belief Functions. Pattern Recognition Letters 28, 644–653 (2006)

    Article  Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  14. Utkin, L.V.: Extensions of belief functions and possibility distributions by using the imprecise dirichlet model. Fuzzy Sets and Systems 154(3), 413–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vannoorenbergue, P., Denœux, T.: Handling uncertain labels in multiclass problems using belief decision trees. In: IPMU 2002, Annecy, France, vol. 3, pp. 1919–1926 (2002)

    Google Scholar 

  16. Walley, P.: Inferences from multinomial data: Learning about a bag of marbles. Journal of the Royal Statistical Society, Series B, 3–57 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sutton-Charani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutton-Charani, N., Destercke, S., Denœux, T. (2012). Classification Trees Based on Belief Functions. In: Denoeux, T., Masson, MH. (eds) Belief Functions: Theory and Applications. Advances in Intelligent and Soft Computing, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29461-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29461-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29460-0

  • Online ISBN: 978-3-642-29461-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics