Abstract
Studies of reversible Turing machines (RTMs) often differ in their use of static resources such as the number of tapes, symbols and internal states. However, the interplay between such resources and computational complexity is not well-established for RTMs. In particular, many foundational results in reversible computing theory are about multitape machines with two or more tapes, but it is non-obvious what these results imply for reversible complexity theory.
Here, we study how the time complexity of multitape RTMs behaves under reductions to one and two tapes. For deterministic Turing machines, it is known that the reduction from k tapes to 1 tape in general leads to a quadratic increase in time. For k to 2 tapes, a celebrated result shows that the time overhead can be reduced to a logarithmic factor. We show that identical results hold for multitape RTMs.
This establishes that the structure of reversible time complexity classes mirrors that of irreversible complexity theory, with a similar hierarchy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Machine. In: Dediu, A.-H., Inenaga, S., MartÃn-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)
Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)
Hennie, F.: One-tape, off-line Turing machine computations. Inform. Control 8, 553–578 (1965)
Hennie, F., Stearns, R.E.: Two-tape simulation of multitape Turing machines. J. ACM 13(4), 533–546 (1966)
Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. Foundations of Computer Science, pp. 66–75. IEEE (1997)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)
Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)
Maass, W.: Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Trans. Amer. Math. Soc. 292(2), 675–693 (1985)
Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E 72(3), 223–228 (1989)
Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)
Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)
Vitányi, P.: Time, space, and energy in reversible computing. In: Proc. Computing Frontiers, pp. 435–444. ACM (2005)
Yokoyama, T., Axelsen, H.B., Glück, R.: Optimizing reversible simulation of injective functions. J. Mult.-Val. Log. S. 18(1), 5–24 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Axelsen, H.B. (2012). Time Complexity of Tape Reduction for Reversible Turing Machines. In: De Vos, A., Wille, R. (eds) Reversible Computation. RC 2011. Lecture Notes in Computer Science, vol 7165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29517-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-29517-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29516-4
Online ISBN: 978-3-642-29517-1
eBook Packages: Computer ScienceComputer Science (R0)