Skip to main content

A Heuristic Algorithm for Finding Edge Disjoint Cycles in Graphs

  • Conference paper
Software and Data Technologies (ICSOFT 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 170))

Included in the following conference series:

  • 552 Accesses

Abstract

The field of data mining provides techniques for new knowledge discovery. Distributed mining offers the miner a larger dataset with the possibility of finding stronger and, perhaps, novel association rules. This paper addresses the role of Hamiltonian cycles on mining distributed data while respecting privacy concerns. We propose a new heuristic algorithm for discovering disjoint Hamiltonian cycles. We use synthetic data to evaluate the performance of the algorithm and compare it with a greedy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alspach, B., Bermond, J.C., Sotteau, D.: Decomposition into cycles 1: Hamilton decompositions. Cycles and Rays, page 9 (1990)

    Google Scholar 

  2. Andrew, C.C.Y.: How to generate and exchange secrets. In: Proc. of the 27th IEEE Symposium on Foundations of Computer Science, pp. 162–167 (1986)

    Google Scholar 

  3. Bae, M.M., Bose, B.: Edge disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes. IEEE Transactions on Computers 52(10), 1271–1284 (2003)

    Article  MathSciNet  Google Scholar 

  4. Baiardi, F., Falleni, A., Granchi, R., Martinelli, F., Petrocchi, M., Vaccarelli, A.: SEAS, a secure e-voting protocol: design and implementation. Computers & Security 24(8), 642–652 (2005)

    Article  Google Scholar 

  5. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica (2001)

    Google Scholar 

  6. Battiti, R., Tecchiolli, G.: The reactive tabu search. INFORMS Journal on Computing 6(2), 126 (1994)

    Article  MATH  Google Scholar 

  7. Bollobas, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7(4), 327–341 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bottcher, S., Obermeier, S.: Secure set union and bag union computation for guaranteeing anonymity of distrustful participants. Journal of Software 3(1), 9 (2008)

    Article  Google Scholar 

  9. Busygin, S.: A new trust region technique for the maximum weight clique problem. Discrete Applied Mathematics 154(15), 2080–2096 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vaidya, J., Clifton, C.: Tools for privacy preserving distributed data mining. SIGKDD Explor. Newsl. 4(2), 28–34 (2002)

    Article  Google Scholar 

  11. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, R., Kresman, R.: Note on privacy-preserving distributed mining and Hamiltonian cycles. In: ICSOFT 2010 Proceedings of the 5th International Conference on Software and Data Technologies, vol. 1, pp. 103–107 (2010)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S., et al.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  14. Grosso, A., Locatelli, M., Croce, F.D.: Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics 10(2), 135–152 (2004)

    Article  Google Scholar 

  15. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann (2006)

    Google Scholar 

  16. Karr, A.F., Fulp, W.J., Vera, F., Young, S.S., Lin, X., Reiter, J.P.: Secure, privacy-preserving analysis of distributed databases. Technometrics 49(3), 335–345 (2007)

    Article  MathSciNet  Google Scholar 

  17. Katayama, K., Hamamoto, A., Narihisa, H.: Solving the maximum clique problem by k-opt local search. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 1021–1025. ACM, New York (2004)

    Chapter  Google Scholar 

  18. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research 25, 159–185 (2006)

    MATH  Google Scholar 

  19. Schneier, B.: Applied cryptography, Katherine Schowalter, pp. 447–454 (1996)

    Google Scholar 

  20. Shepard, S.S.: Anonymous Opt-Out and Secure Computation in Data Mining (2007)

    Google Scholar 

  21. Solnon, C., Fenet, S.: A study of aco capabilities for solving the maximum clique problem. Journal of Heuristics 12(3), 155–180 (2006)

    Article  MATH  Google Scholar 

  22. Stewart, I.A.: Distributed algorithms for building Hamiltonian cycles in k-ary n-cubes and hypercubes with faulty links. Journal of Interconnection Networks 8(3), 253 (2007)

    Article  Google Scholar 

  23. Urabe, S., Wong, J., Kodama, E., Takata, T.: A high collusion-resistant approach to distributed privacy-preserving data mining. In: Proceedings of the 25th Conference on Proceedings of the 25th IASTED International Multi-Conference: Parallel and Distributed Computing and Networks, page 331. ACTA Press (2007)

    Google Scholar 

  24. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. ACM Sigmod Record 33(1), 50–57 (2004)

    Article  Google Scholar 

  25. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. ACM Sigmod Record 33(1), 50–57 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, R., Kresman, R. (2013). A Heuristic Algorithm for Finding Edge Disjoint Cycles in Graphs. In: Cordeiro, J., Virvou, M., Shishkov, B. (eds) Software and Data Technologies. ICSOFT 2010. Communications in Computer and Information Science, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29578-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29578-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29577-5

  • Online ISBN: 978-3-642-29578-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics