Skip to main content

Function-Function Correlated Multi-Label Protein Function Prediction over Interaction Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7262))

  • 1391 Accesses

Abstract

Many previous computational methods for protein function prediction make prediction one function at a time, fundamentally, which is equivalent to assume the functional categories of proteins to be isolated. However, biological processes are highly correlated and usually intertwined together to happen at the same time, therefore it would be beneficial to consider protein function prediction as one indivisible task and treat all the functional categories as an integral and correlated prediction target. By leveraging the function-function correlations, it is expected to achieve improved overall predictive accuracy. To this end, we develop a novel network based protein function prediction approach, under the framework of multi-label classification in machine learning, to utilize the function-function correlations. Besides formulating the function-function correlations in the optimization objective explicitly, we also exploit them as part of the pairwise protein-protein similarities implicitly. The algorithm is built upon the Green’s function over a graph, which not only employs the global topology of a network but also captures its local structural information. We evaluate the proposed approach on Saccharomyces cerevisiae species. The encouraging experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25 (2000)

    Article  Google Scholar 

  2. Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)

    Article  Google Scholar 

  3. Chung, F.: Spectral graph theory, vol. (92). American Mathematical Society (1997)

    Google Scholar 

  4. Deane, C., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein Interactions Two Methods for Assessment of the Reliability of High Throughput Observations*. Molecular & Cellular Proteomics 1(5), 349–356 (2002)

    Article  Google Scholar 

  5. Ding, C., Simon, H., Jin, R., Li, T.: A learning framework using Green’s function and kernel regularization with application to recommender system. In: Proc. of ACM SIGKDD 2007, pp. 260–269 (2007)

    Google Scholar 

  6. Edgar, R., Domrachev, M., Lash, A.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207 (2002)

    Article  Google Scholar 

  7. Giot, L., Bader, J., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y., Ooi, C., Godwin, B., Vitols, E., et al.: A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003)

    Article  Google Scholar 

  8. Harbison, C., Gordon, D., Lee, T., Rinaldi, N., Macisaac, K., Danford, T., Hannett, N., Tagne, J., Reynolds, D., Yoo, J., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  9. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18(6), 523–531 (2001)

    Article  Google Scholar 

  10. Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  11. Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. U.S.A. 101(9), 2888–2893 (2004)

    Article  Google Scholar 

  12. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  13. Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman, D.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27(1), 44 (1999)

    Article  Google Scholar 

  14. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, 302–310 (2005)

    Article  Google Scholar 

  15. Pei, P., Zhang, A.: A topological measurement for weighted protein interaction network. In: Proceedings of IEEE Computational Systems Bioinformatics Conference, pp. 268–278 (2005)

    Google Scholar 

  16. Schwikowski, B., Uetz, P., Fields, S.: A network of protein- protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)

    Article  Google Scholar 

  17. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. System Biol. 3(1) (2007)

    Google Scholar 

  18. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(Database Issue), D535 (2006)

    Article  Google Scholar 

  19. Tong, A., Lesage, G., Bader, G., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G., Brost, R., Chang, M., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)

    Article  Google Scholar 

  20. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)

    Article  Google Scholar 

  21. Wang, H., Ding, C., Huang, H.: Multi-label classification: Inconsistency and class balanced k-nearest neighbor. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  22. Wang, H., Ding, C., Huang, H.: Multi-label Linear Discriminant Analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Wang, H., Huang, H., Ding, C.: Image Annotation Using Multi-label Correlated Greens Function. In: Proc. of IEEE ICCV 2009, pp. 2029–2034 (2009)

    Google Scholar 

  24. Wang, H., Huang, H., Ding, C.: Multi-label Feature Transform for Image Classifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Wang, H., Huang, H., Ding, C.: Image annotation using bi-relational graph of images and semantic labels. In: Proc. of IEEE CVPR 2011, pp. 793–800. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Huang, H., Ding, C. (2012). Function-Function Correlated Multi-Label Protein Function Prediction over Interaction Networks. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics