Abstract
Many previous computational methods for protein function prediction make prediction one function at a time, fundamentally, which is equivalent to assume the functional categories of proteins to be isolated. However, biological processes are highly correlated and usually intertwined together to happen at the same time, therefore it would be beneficial to consider protein function prediction as one indivisible task and treat all the functional categories as an integral and correlated prediction target. By leveraging the function-function correlations, it is expected to achieve improved overall predictive accuracy. To this end, we develop a novel network based protein function prediction approach, under the framework of multi-label classification in machine learning, to utilize the function-function correlations. Besides formulating the function-function correlations in the optimization objective explicitly, we also exploit them as part of the pairwise protein-protein similarities implicitly. The algorithm is built upon the Green’s function over a graph, which not only employs the global topology of a network but also captures its local structural information. We evaluate the proposed approach on Saccharomyces cerevisiae species. The encouraging experimental results demonstrate the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1), 25 (2000)
Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)
Chung, F.: Spectral graph theory, vol. (92). American Mathematical Society (1997)
Deane, C., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein Interactions Two Methods for Assessment of the Reliability of High Throughput Observations*. Molecular & Cellular Proteomics 1(5), 349–356 (2002)
Ding, C., Simon, H., Jin, R., Li, T.: A learning framework using Green’s function and kernel regularization with application to recommender system. In: Proc. of ACM SIGKDD 2007, pp. 260–269 (2007)
Edgar, R., Domrachev, M., Lash, A.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207 (2002)
Giot, L., Bader, J., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y., Ooi, C., Godwin, B., Vitols, E., et al.: A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003)
Harbison, C., Gordon, D., Lee, T., Rinaldi, N., Macisaac, K., Danford, T., Hannett, N., Tagne, J., Reynolds, D., Yoo, J., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)
Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18(6), 523–531 (2001)
Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)
Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. U.S.A. 101(9), 2888–2893 (2004)
von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)
Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman, D.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27(1), 44 (1999)
Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, 302–310 (2005)
Pei, P., Zhang, A.: A topological measurement for weighted protein interaction network. In: Proceedings of IEEE Computational Systems Bioinformatics Conference, pp. 268–278 (2005)
Schwikowski, B., Uetz, P., Fields, S.: A network of protein- protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)
Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. System Biol. 3(1) (2007)
Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(Database Issue), D535 (2006)
Tong, A., Lesage, G., Bader, G., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G., Brost, R., Chang, M., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)
Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)
Wang, H., Ding, C., Huang, H.: Multi-label classification: Inconsistency and class balanced k-nearest neighbor. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)
Wang, H., Ding, C., Huang, H.: Multi-label Linear Discriminant Analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010)
Wang, H., Huang, H., Ding, C.: Image Annotation Using Multi-label Correlated Greens Function. In: Proc. of IEEE ICCV 2009, pp. 2029–2034 (2009)
Wang, H., Huang, H., Ding, C.: Multi-label Feature Transform for Image Classifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010)
Wang, H., Huang, H., Ding, C.: Image annotation using bi-relational graph of images and semantic labels. In: Proc. of IEEE CVPR 2011, pp. 793–800. IEEE (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Huang, H., Ding, C. (2012). Function-Function Correlated Multi-Label Protein Function Prediction over Interaction Networks. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-29627-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29626-0
Online ISBN: 978-3-642-29627-7
eBook Packages: Computer ScienceComputer Science (R0)