Abstract
Artificial neural networks have been well developed so far. First two generations of neural networks have had a lot of successful applications. Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks which have potential to solve problems related to biological stimuli. They derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike emission.
SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developing models with an exponential capacity of memorizing and a strong ability to fast adaptation.Moreover, SNNs add a new dimension, the temporal axis, to the representation capacity and the processing abilities of neural networks. In this chapter, we present how SNN can be applied with efficacy in image clustering, segmentation and edge detection. Results obtained confirm the validity of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghosh-Dastidar, S., Adeli, H.: Third generation neural networks: Spiking neural networks. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61, pp. 167–178. Springer, Heidelberg (2009)
Paugam-Moisy, H., Bohte, S.M.: Computing with Spiking Neuron Networks. In: Kok, J., Heskes, T. (eds.) Handbook of Natural Computing. Springer, Heidelberg (2009)
Thorpe, S. J., Delorme, A., VanRullen, R. : Spike-based strategies for rapid processing. Neural Networkss 14(6-7), 715–726 (2001)
Wu, Q.X., McGinnity, M., Maguire, L.P., Belatreche, A., Glackin, B.: Processing visual stimuli using hierarchical spiking neural networks. Neurocomputing 71(10-12), 2055–2068 (2008)
Girau, B., Torres-Huitzil, C.: FPGA implementation of an integrate-and-fire LEGION model for image segmentation. In: European Symposium on Artificial Neural Networks, ESANN 2006, pp. 173–178 (2006)
Buhmann, J., Lange, T., Ramacher, U.: Image Segmentation by Networks of Spiking Neurons. Neural Computation 17(5), 1010–1031 (2005)
Rowcliffe, P., Feng, J., Buxton, H.: Clustering within Integrate-and-Fire Neurons for Image Segmentation. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 69–74. Springer, Heidelberg (2002)
Maass, W.: On the relevance neural networks. MIT Press, London (2001)
Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press (2002)
Gerstner, W., Kistler, W.: Mathematical formulations of Hebbian learning. Biological Cybernetics 87, 404–415 (2002)
Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks 10(9), 1659–1671 (1997)
Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, MIT Press, Cambridge (1999)
NatschlNager, T., Ruf, B.: Spatial and temporal pattern analysis via spiking neurons. Network: Comp. Neural Systems 9(3), 319–332 (1998)
Averbeck, B., Latham, P., Pouget, A.: Neural correlations, population coding and computation. Nature Reviews Neuroscience 7, 358–366 (2006)
Stein, R., Gossen, E., Jones, K.: Neuronal variability: noise or part of the signal? Nature Reviews Neuroscience 6, 389–397 (2005)
Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)
Butts, D.A., Weng, C., Jin, J., Yeh, C., Lesica, N.A., Alonso, J.M., Stanley, G.B.: Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 (2007)
Bohte, S.M.: The Evidence for Neural Information Processing with Precise Spike-times: A Survey. Natural Computing 3(2), 195–206 (2004)
Bohte, S.M., La Poutre, H., Kok, J.N.: Unsupervised clustering with spiking neurons by sparse temporal coding and Multi-Layer RBF Networks. IEEE Transactions on Neural Networks 13(2), 426–435 (2002)
Oster, M., Liu, S.C.: A winner-take-all spiking network with spiking inputs. In: Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2004), vol. 11, pp. 203–206 (2004)
Gupta, A., Long, L.N.: Hebbian learning with winner take all for spiking neural networks. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1189–1195 (2009)
Leibold, C., Hemmen, J.L.: Temporal receptive fields, spikes, and Hebbian delay selection. Neural Networks 14(6-7), 805–813 (2001)
da Silva Simões, A., Costa, A.H.R.: A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 227–236. Springer, Heidelberg (2008)
Knesek, E.A.: Roche image analysis system. Acta Cytologica 40(1), 60–66 (1996)
Lezoray, O., Cardot, H.: Cooperation of pixel classification schemes and color watershed: a Study for Microscopical Images. IEEE Transactions on Images Processing 11(7), 738–789 (2002)
Mouroutis, T., Roberts, S.J., Bharath, A.A.: Robust cell nuclei segmentation using statistical modeling. BioImaging 6, 79–91 (1998)
Wu, H.S., Barba, J., Gil, J.: Iterative thresholding for segmentation of cells from noisy images. J. Microsc. 197, 296–304 (2000)
Karlsson, A., Stråhlén, K., Heyden, A.: Segmentation of Histopathological Sections Using Snakes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 595–602. Springer, Heidelberg (2003)
Papanicolaou, G.N.: A new procedure for staining vaginal smears. Science 95, 432 (1942)
Meftah, B., Benyettou, A., Lezoray, O., Wu, Q.X.: Image clustering with spiking neuron network. In: IEEE World Congress on Computational Intelligence, International Joint Conference on Neural Networks (IJCNN 2008), pp. 682–686 (2008)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int Conf. Computer Vision, vol. 2, pp. 416–423 (2001)
Meurie, C., Lezoray, O., Charrier, C., Elmoataz, A.: Combination of multiple pixel classifiers for microscopic image segmentation. IASTED International Journal of Robotics and Automation 20(2), 63–69 (2005)
Meftah, B., Lezoray, O., Lecluse, M., Benyettou, A.: Cell Microscopic Segmentation with Spiking Neuron Networks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 117–126. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag GmbH Berlin Heidelberg
About this chapter
Cite this chapter
Meftah, B., Lézoray, O., Chaturvedi, S., Khurshid, A.A., Benyettou, A. (2013). Image Processing with Spiking Neuron Networks. In: Yang, XS. (eds) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29694-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-29694-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29693-2
Online ISBN: 978-3-642-29694-9
eBook Packages: EngineeringEngineering (R0)