Skip to main content

Multivariate Polynomial Integration and Differentiation Are Polynomial Time Inapproximable Unless P=NP

  • Conference paper
Frontiers in Algorithmics and Algorithmic Aspects in Information and Management

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7285))

Abstract

We investigate the complexity of approximate integration and differentiation for multivariate polynomials in the standard computation model. For a functor F(·) that maps a multivariate polynomial to a real number, we say that an approximation A(·) is a factor \(\alpha\colon N \to N^+\) approximation iff for every multivariate polynomial f with A(f) ≥ 0, \(\frac{F(f)}{\alpha(n)} \le A(f) \le \alpha(n)F(f)\), and for every multivariate polynomial f with F(f) < 0, \(\alpha(n) F(f) \le A(f) \le \frac{F(f)}{\alpha(n)}\), where n is the length of f, \(\textit{len}(f)\).

For integration over the unit hypercube, [0,1]d, we represent a multivariate polynomial as a product of sums of quadratic monomials: f(x 1,…, x d ) = ∏ 1 ≤ i ≤ k p i (x 1,…,x d ), where p i (x 1,…,x d ) = ∑ 1 ≤ j ≤ d q i,j (x j ), and each q i,j (x j ) is a single variable polynomial of degree at most two and constant coefficients. We show that unless P = NP there is no \(\alpha\colon N\to N^+\) and A(·) that is a factor α polynomial-time approximation for the integral \(I_d(f) = \int_{[0,1]^d} f(x_1,\ldots , x_d)d\,x_1,\ldots,d\,x_d\).

For differentiation, we represent a multivariate polynomial as a product quadratics with 0,1 coefficients. We also show that unless P = NP there is no \(\alpha\colon N\to N^+\) and A(·) that is a factor α polynomial-time approximation for the derivative \(\frac{\partial f(x_1,\ldots , x_d)}{\partial x_1,\ldots,\partial x_d}\) at the origin (x 1, …, x d ) = (0, …, 0). We also give some tractable cases of high dimensional integration and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Z., Fu, B.: Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 309–323. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Chen, Z., Fu, B.: The Complexity of Testing Monomials in Multivariate Polynomials. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 1–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Chen, Z., Fu, B., Liu, Y., Schweller, R.: Algorithms for Testing Monomials in Multivariate Polynomials. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 16–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 2nd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  5. Jerrum, M., Sinclaire, A., Vigoda, E.: A polynomial-time ap- priximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM 51(4), 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Niederreiter, H.: Quasi-monte carlo methods and pseudo-random numbers. Bulletin of the American Mathematical Society 84(6), 957–1041 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Niederreiter, H.: Random Number Generation and quasi-Monte Carlo Methods, vol. 63. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  8. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 507–516 (2008)

    Google Scholar 

  9. Sloan, I.H., Wozniakowski, H.: An intractability result for multiple integration. Math. Comput. 66(219), 1119–1124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tovey, C.A.: A simplified satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Trench, W.F.: Advanced Calculus. Harper & Row, New York (1978)

    Google Scholar 

  12. Valiant, L.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 249–261 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, B. (2012). Multivariate Polynomial Integration and Differentiation Are Polynomial Time Inapproximable Unless P=NP. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29700-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29700-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29699-4

  • Online ISBN: 978-3-642-29700-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics