Abstract
Progressively Filtering (PF) is a simple categorization technique framed within the local classifier per node approach. In PF, each classifier is entrusted with deciding whether the input in hand can be forwarded or not to its children. A simple way to implement PF consists of unfolding the given taxonomy into pipelines of classifiers. In so doing, each node of the pipeline is a binary classifier able to recognize whether or not an input belongs to the corresponding class. In this chapter, we illustrate and discuss the results obtained by assessing the PF technique, used to perform text categorization. Experiments, on the Reuters Corpus (RCV1- v2) dataset, are focused on the ability of PF to deal with input imbalance. In particular, the baseline is: (i) comparing the results to those calculated resorting to the corresponding flat approach; (ii) calculating the improvement of performance while augmenting the pipeline depth; and (iii) measuring the performance in terms of generalization- / specialization- / misclassification-error and unknown-ratio. Experimental results show that, for the adopted dataset, PF is able to counteract great imbalances between negative and positive examples. We also present and discuss further experiments aimed at assessing TSA, the greedy threshold selection algorithm adopted to perform PF, against a relaxed brute-force algorithm and the most relevant state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addis, A., Armano, G., Vargiu, E.: From a generic multiagent architecture to multiagent information retrieval systems. In: AT2AI-6, Sixth International Workshop, From Agent Theory to Agent Implementation, pp. 3–9 (2008)
Addis, A., Armano, G., Vargiu, E.: Assessing progressive filtering to perform hierarchical text categorization in presence of input imbalance. In: Proceedings of International Conference on Knowledge Discovery and Information Retrieval, KDIR 2010 (2010)
Addis, A., Armano, G., Vargiu, E.: A Comparative Experimental Assessment of a Threshold Selection Algorithm in Hierarchical Text Categorization. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 32–42. Springer, Heidelberg (2011)
Armano, G.: On the progressive filtering approach to hierarchical text categorization. Tech. rep., DIEE - University of Cagliari (2009)
Bellifemine, F., Caire, G., Greenwood, D. (eds.): Developing Multi-Agent Systems with JADE (Wiley Series in Agent Technology). John Wiley and Sons (2007)
Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In: SIGIR 2009: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 11–18. ACM, New York (2009)
Brank, J., Mladenic, D., Grobelnik, M.: Large-scale hierarchical text classification using svm and coding matrices. In: Large-Scale Hierarchical Classification Workshop (2010)
Ceci, M., Malerba, D.: Hierarchical Classification of HTML Documents with WebClassII. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 57–72. Springer, Heidelberg (2003)
Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)
Cost, R.S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)
D’Alessio, S., Murray, K., Schiaffino, R.: The effect of using hierarchical classifiers in text categorization. In: Proceedings of of the 6th International Conference on Recherche dInformation Assiste par Ordinateur (RIAO), pp. 302–313 (2000)
Dumais, S.T., Chen, H.: Hierarchical classification of Web content. In: Belkin, N.J., Ingwersen, P., Leong, M.K. (eds.) Proceedings of 23rd ACM International Conference on Research and Development in Information Retrieval, SIGIR 2000, pp. 256–263. ACM Press, New York (2000)
Esuli, A., Fagni, T., Sebastiani, F.: Boosting multi-label hierarchical text categorization. Inf. Retr. 11(4), 287–313 (2008)
Gaussier, É., Goutte, C., Popat, K., Chen, F.: A Hierarchical Model for Clustering and Categorising Documents. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 229–247. Springer, Heidelberg (2002)
Japkowicz, N.: Learning from imbalanced data sets: a comparison of various strategies. In: AAAI Workshop on Learning from Imbalanced Data Sets (2000)
Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Fisher, D.H. (ed.) Proceedings of 14th International Conference on Machine Learning, ICML 1997, pp. 170–178. Morgan Kaufmann Publishers, San Francisco (1997)
Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS International Transactions on Computer Science and Engineering 30, 25–36 (2006)
Kotsiantis, S., Pintelas, P.: Mixture of expert agents for handling imbalanced data sets. Ann Math. Comput. Teleinformatics 1, 46–55 (2003)
Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)
Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: SIGIR 1995: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 246–254. ACM, New York (1995)
Lewis, D.D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)
McCallum, A.K., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by shrinkage in a hierarchy of classes. In: Shavlik, J.W. (ed.) Proceedings of 15th International Conference on Machine Learning, ICML 1998, pp. 359–367. Morgan Kaufmann Publishers, San Francisco (1998)
Mladenic, D., Grobelnik, M.: Feature selection for classification based on text hierarchy. In: Text and the Web, Conference on Automated Learning and Discovery CONALD 1998 (1998)
Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Learning hierarchical multi-category text classification models. In: ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 744–751. ACM, New York (2005)
Ruiz, M.E., Srinivasan, P.: Hierarchical text categorization using neural networks. Information Retrieval 5(1), 87–118 (2002)
Ruiz, M.E.: Combining machine learning and hierarchical structures for text categorization. Ph.D. thesis, supervisor-Srinivasan, Padmini (2001)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys (CSUR) 34(1), 1–55 (2002)
Sun, A., Lim, E.: Hierarchical text classification and evaluation. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 521–528. IEEE Computer Society, Washington, DC, USA (2001)
Weigend, A.S., Wiener, E.D., Pedersen, J.O.: Exploiting hierarchy in text categorization. Information Retrieval 1(3), 193–216 (1999)
Wu, F., Zhang, J., Honavar, V.: Learning Classifiers using Hierarchically Structured Class Taxonomies. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 313–320. Springer, Heidelberg (2005)
Wu, G., Chang, E.Y.: Class-boundary alignment for imbalanced dataset learning. In: ICML 2003 Workshop on Learning from Imbalanced Data Sets, pp. 49–56 (2003)
Takigawa, Y., Hotta, S., Kiyasu, S., Miyahara, S.: Pattern classification using weighted average patterns of categorical k-nearest neighbors. In: Proceedings of the 1th International Workshop on Camera-Based Document Analysis and Recognition, pp. 111–118 (2005)
Yan, R., Liu, Y., Jin, R., Hauptmann, A.: On predicting rare classes with svm ensembles in scene classification. In: Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2003), vol. 3, pp. III-21–III-4 (April 2003)
Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1/2), 69–90 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Addis, A., Armano, G., Vargiu, E. (2013). Experimentally Studying Progressive Filtering in Presence of Input Imbalance. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2010. Communications in Computer and Information Science, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29764-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-29764-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29763-2
Online ISBN: 978-3-642-29764-9
eBook Packages: Computer ScienceComputer Science (R0)