Abstract
One of the lessons learned in the last years in the metaheuristics community, and most prominently in the area of evolutionary computation (EC), is the need of exploiting problem knowledge in order to come up with effective optimization tools. This problem-knowledge can be provided in a variety of ways, but there are situations in which endowing the optimization algorithm with this knowledge is a very elusive task. This may be the case when this problem-awareness is hard to encapsulate within a specific algorithmic description, e.g., they belong more to the space of human-expert’s intuition than elsewhere. An extreme case of this situation can take place when the evaluation itself of solutions is not algorithmic, but needs the introduction of a human to critically assess the quality of solutions. The above use of a combined human-user/evolutionary-algorithm approach is commonly termed interactive EC. The term user-centric EC is however more appropriate since it hints possibilities for the system to be proactive rather than merely interactive, i.e., to anticipate some of the user behavior and/or exhibit some degree of creativity. Such features constitute ambitious goals that require a good grasp of the basic underlying issues surrounding interactive optimization. An overview of these is presented in this paper, along with some hints on what the future may bring to this area. An application example is provided in the context of the search for Optimal Golomb Rulers, a very hard combinatorial problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babcock, W.C.: Intermodulation interference in radio systems. Bell Systems Technical Journal, 63–73 (1953)
Breukelaar, R., Emmerich, M., Bäck, T.: On Interactive Evolution Strategies. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 530–541. Springer, Heidelberg (2006)
Cotta, C., Fernández, A.: A Hybrid GRASP – Evolutionary Algorithm Approach to Golomb Ruler Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 481–490. Springer, Heidelberg (2004)
Cotta, C., Dotú, I., Fernández, A.J., Hentenryck, P.V.: Local search-based hybrid algorithms for finding Golomb rulers. Constraints 12(3), 263–291 (2007)
Cotta, C., Fernández-Leiva, A.J.: Bio-inspired Combinatorial Optimization: Notes on Reactive and Proactive Interaction. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 348–355. Springer, Heidelberg (2011)
Eiben, A.E., Smith, J.E.: Introduction to evolutionary computation. Springer, Heidelberg (2003)
Hart, W.E., Belew, R.K.: Optimizing an arbitrary function is hard for the genetic algorithm. In: Belew, R.K., Booker, L.B. (eds.) 4th International Conference on Genetic Algorithms, pp. 190–195. Morgan Kaufmann, San Mateo CA (1991)
Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits of partial Lamarckianism. Evolutionary Computation 5(1), 31–60 (1997)
Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn. International Series in Operations Research and Management Science, vol. 146, pp. 141–183. Springer, Heidelberg (2010)
Ohsaki, M., Takagi, H., Ohya, K.: An input method using discrete fitness values for interactive GA. Journal of Intelligent and Fuzzy Systems 6(1), 131–145 (1998)
Puchinger, J., Raidl, G.R.: Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, Part II. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Espinar, J., Cotta, C., Fernández-Leiva, A.J. (2012). User-Centric Optimization with Evolutionary and Memetic Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-29843-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29842-4
Online ISBN: 978-3-642-29843-1
eBook Packages: Computer ScienceComputer Science (R0)