Skip to main content

A Kernel-Based Algorithm for Numerical Solution of Nonlinear PDEs in Finance

  • Conference paper
Large-Scale Scientific Computing (LSSC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7116))

Included in the following conference series:

Abstract

We present an algorithm for approximate solutions to certain nonlinear model equations from financial mathematics, using kernels techniques (fundamental solution, Green’s function) for the linear Black-Scholes operator as a basis of the computation. Numerical experiments for comparison the accuracy of the algorithms with other known numerical schemes are discussed. Finally, observations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, R., Ishimura, N.: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Japan Acad., Ser. A 84, 11–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agliardi, R., Popivanov, P., Slavova, A.: Nonhypoellipticity and comparison principle for partial differential equations of Black-Scholes type. Nonl. Anal.: Real Word Appl. 12(3), 1429–1436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ankudinova, J., Ehrhardt, M.: On tne numerical solution of nonlinear Black-Scholes equations. Int. J. of Comp. and Math. with Appl. 56, 779–812 (2008)

    MathSciNet  Google Scholar 

  4. Avellaneda, M., Parás, A.: Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model. Appl. Math. Fin. 3(1), 21–52 (1996)

    Article  MATH  Google Scholar 

  5. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance and Stochastics 2(4), 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bordag, L., Chmakova, A.: Explicit solutions for a nonlinear model of financial derivatives. Int. J. Theor. Appl. Finance 10, 1–21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Yamamoto, T.: On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators. Computing 49, 87–94 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Company, R., Navarro, E., Pintos, J., Ponsoda, E.: Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Int. J. of Comp. and Math. with Appl. 56, 813–821 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Düring, B., Fournié, M., Jüngel, A.: Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. ESAIM: M2AN 38(2), 359–369 (2004)

    Article  MATH  Google Scholar 

  10. Epperson, J.: A kernel-based method for parabolic equations with nonlinear convection terms. J. Comp. and Appl. Math. 36, 275–288 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frey, R., Patie, P.: Risk management for derivatives in illiquid markets: a simulation-study. In: Sandmann, K., Schon̈bucher, P. (eds.) Adv. in Fin. and Stoch., pp. 137–159. Springer, Berlin (2002)

    Google Scholar 

  12. Heider, P.: Numerical Methods for Non-Linear Black-Scholes Equations. Appl. Math. Fin. 17(1), 59–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishimura, N., Koleva, M.N., Vulkov, L.G.: Numerical Solution of a Nonlinear Evolution Equation for the Risk Preference. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 445–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Jandačka, M., Ševčovič, D.: On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. J. of Appl. Math. (3), 235–258 (2005)

    Google Scholar 

  15. Leland, H.E.: Option pricing and replication with transactions costs. J. of Finance 40(5), 1283–1301 (1985)

    Google Scholar 

  16. Ševčovič, D., Stehlíková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Sci. Publ., NY (2010)

    Google Scholar 

  17. Seydel, R.: Tools for Computational Finance. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koleva, M.N., Vulkov, L.G. (2012). A Kernel-Based Algorithm for Numerical Solution of Nonlinear PDEs in Finance. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29843-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29842-4

  • Online ISBN: 978-3-642-29843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics