Abstract
The Linking Open Data(LOD) cloud is a collection of linked Resource Description Framework (RDF) data with over 26 billion RDF triples. Consuming linked data is a challenging task because each data set in the LOD cloud has specific ontology schema, and familiarity with ontology schema is required in order to query various linked data sets. However, manually checking each data set is time-consuming, especially when many data sets from various domains are used. This difficulty can be overcome without user interaction by using an automatic method that integrates different ontology schema. In this paper, we propose a Mid-Ontology learning approach that can automatically construct a simple ontology, linking related ontology predicates (class or property) in different data sets. Our Mid-Ontology learning approach consists of three main phases: data collection, predicate grouping, and Mid-Ontology construction. Experimental results show that our Mid-Ontology learning approach successfully integrates diverse ontology schema, and effectively retrieves related information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2), 97–104 (2010)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)
Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. ACM SIGMOD Record 35, 34–41 (2006)
Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer-Verlag New York, Inc. (2006)
Damova, M., Kiryakov, A., Simov, K., Petrov, S.: Mapping the central lod ontologies to proton upper-level ontology. In: Proceedings of the Fifth International Workshop on Ontology Matching, pp. 61–72 (2010)
Ding, L., Shinavier, J., Shangguan, Z., McGuinness, D.L.: Sameas networks and beyond: Analyzing deployment status and implications of owl: sameas in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 145–160. Springer, Heidelberg (2010)
Drumond, L., Girardi, R.: A survey of ontology learning procedures. In: Proceedings of the Third Workshop on Ontologies and their Applications (2008)
Erling, O., Mikhailov, I.: Virtuoso: Rdf support in a native rdbms. In: Semantic Web Information Management, pp. 501–519 (2009)
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When owl:sameAs isn’t the same: An analysis of identity in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer, Heidelberg (2010)
Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool (2011)
Ichise, R.: An analysis of multiple similarity measures for ontology mapping problem. International Journal of Semantic Computing 4(1), 103–122 (2010)
Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010)
Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet:similarity: Measuring the relatedness of concepts. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 1024–1025 (2004)
Porter, M.F.: An algorithm for suffix stripping. In: Readings in Information Retrieval, pp. 313–316 (1997)
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)
Zhou, L.: Ontology learning: state of the art and open issues. Information Technology and Management 8, 241–252 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, L., Ichise, R. (2012). Mid-Ontology Learning from Linked Data. In: Pan, J.Z., et al. The Semantic Web. JIST 2011. Lecture Notes in Computer Science, vol 7185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29923-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-29923-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29922-3
Online ISBN: 978-3-642-29923-0
eBook Packages: Computer ScienceComputer Science (R0)