Abstract
Hybrid CSP (HCSP) extends CSP to describe interacting continuous and discrete dynamics. The concurrency with synchronous communications, timing constructs, interrupts, differential equations, and so on, make the behavior of HCSP difficult to specify and verify. In this paper, we propose a Hoare style calculus for reasoning about HCSP. The calculus includes Duration Calculus formulas to record process execution history and reason about real-time properties and continuous evolution, and dedicated predicate symbols to specify communication traces and readiness of process actions so that the composite constructs of HCSP can be handled compositionally by using assume/guarantee reasoning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)
Guelev, D.P., Dang, V.H.: Prefix and projection onto state in duration calculus. In: ETAPS Workshop Theory and Practice of Timed Systems (TPTS 2002). ENTCS, vol. 65(6), pp. 101–119 (2002)
Guelev, D.P., Dang, V.H.: On the completeness and decidability of duration calculus with iteration. Theoretical Computer Science 337(1-3), 278–304 (2005)
He, J.: From CSP to hybrid systems. In: A Classical Mind, pp. 171–189. Prentice Hall International (UK) Ltd. (1994)
Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE Computer Society (1996)
Hoare, C.A.R.: A calculus of total correctness for communicating processes. Science of Computer Programming 1(1-2), 49–72 (1981)
Hooman, J.: Extending Hoare logic to real-time. Formal Aspects of Computing 6(6A), 801–826 (1994)
Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A Calculus for Hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer, Heidelberg (2010)
Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: EMSOFT 2011, pp. 97–106. ACM (2011)
Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35. Springer, Heidelberg (1993)
Manna, Z., Sipma, H.: Deductive Verification of Hybrid Systems Using STeP. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 305–318. Springer, Heidelberg (1998)
Misra, J., Chandy, M.: Proofs of networks of processes. IEEE Transactions on Software Engineering (TSE) 7(4), 417–426 (1981)
Pandya, P.K., Joseph, M.: P-A logic - a compositional proof system for distributed programs. Distributed Computing 5, 37–54 (1991)
Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41(2), 143–189 (2008)
Soundararajan, N.: Axiomatic semantics of communicating sequential processes. ACM Transactions on Programming Languages and Systems 6(4), 647–662 (1984)
Wang, S., Zhan, N., Guelev, D.: An assume/guarantee based compositional calculus for hybrid CSP and its soundness. Technical Report ISCAS-SKLCS-11-24, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences (2011)
Zhou, C.: Specifying Communicating Systems with Temporal Logic. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 304–323. Springer, Heidelberg (1989)
Zhou, C., Dang, V., Li, X.: A Duration Calculus with Infinite Intervals. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 16–41. Springer, Heidelberg (1995)
Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. Series: Monographs in Theoretical Computer Science. An EATCS Series. Springer (2004)
Zhou, C., Wang, J., Ravn, A.P.: A Formal Description of Hybrid Systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530. Springer, Heidelberg (1996)
Zwiers, J., de Bruin, A., de Roever, W.-P.: A Proof System for Partial Correctness of Dynamic Networks of Processes (Extended Abstract). In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 513–527. Springer, Heidelberg (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, S., Zhan, N., Guelev, D. (2012). An Assume/Guarantee Based Compositional Calculus for Hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-29952-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29951-3
Online ISBN: 978-3-642-29952-0
eBook Packages: Computer ScienceComputer Science (R0)